Synopsis

Universal Pairing Symmetry

Physics 5, s27
Specific heat measurements reveal a universal symmetry for the superconducting gap in a family of heavy fermion materials.

Superconductivity in the CeMIn5 family, where M can be cobalt (Co), rhodium (Rh), or iridium (Ir), occurs in close proximity to a phase with antiferromagnetic order. In these materials, charge carriers have a large effective mass (hence the name “heavy fermion” superconductivity), which implies that conventional attraction via phonons cannot be responsible for the pairing that gives rise to superconductivity.

One hint to the pairing mechanism can come from studying the symmetry of the superconducting gap. CeCoIn5 and CeRhIn5 are widely accepted to have nodes in the superconducting gap ( dx2-y2 symmetry), suggesting the pairing interaction is driven by antiferromagnetic spin fluctuations. But for the third member of the family, CeIrIn5, the superconducting gap symmetry has remained controversial because of discrepancies between different measurements.

In a Rapid Communication appearing in Physical Review B, Shunichiro Kittaka from the University of Tokyo, Japan, and collaborators report experiments that resolve this controversy and show that the gap in CeIrIn5 also has dx2-y2 symmetry. They measured the specific heat of a sample of CeIrIn5 at multiple orientations with respect to an external magnetic field down to temperatures as low as 80 millikelvin. Kittaka et al. find that the field-angle-resolved specific heat measurements show a fourfold angular oscillation that is consistent with theoretical calculations that assume CeIrIn5 has a gap with dx2-y2 symmetry. These results suggest a universal pairing mechanism for the CeMIn5 family of heavy fermion superconductors, an important clue to developing a complete theoretical understanding. – Sarma Kancharla


Subject Areas

Superconductivity

Related Articles

Superconductivity Experts Speak Up for Hydride Research
Superconductivity

Superconductivity Experts Speak Up for Hydride Research

An independent analysis of data on the hotly debated superconductivity of certain hydrogen-rich compounds, or hydrides, concludes that the phenomenon is likely genuine. Read More »

Making Waves in the Debate over Light-Induced Superconductivity
Superconductivity

Making Waves in the Debate over Light-Induced Superconductivity

New experiments with cuprate materials explore a connection between so-called charge-density waves and a light-induced state that resembles superconductivity. Read More »

Simulating Superconductivity in Optical Lattices
Atomic and Molecular Physics

Simulating Superconductivity in Optical Lattices

Researchers have devised a way to use atoms in optical lattices to model high-temperature superconductors, whose behavior is not yet fully understood. Read More »

More Articles