Synopsis

Graphene Nanoribbons Zip Up

Physics 5, s29
Nanoscale planar materials such as graphene could be twisted to fabricate tubular objects.
O. Kit, Phys. Rev. B (2012)

When it comes to the study of nanoscale systems, controlled fabrication always poses practical challenges. For example, it is difficult to fabricate carbon nanotubes with a well-defined chirality—a measure of how the nanotubes are wrapped that determines if they are metallic or semiconducting. Since graphene has been successfully made by chemically assisted scissoring of carbon nanotubes, it seems reasonable to ask if an inverse process, rolling up graphene membranes, could form carbon nanotubes. More importantly, elastic graphene membranes might even offer better control over nanotube chirality compared to current methods of nanotube synthesis.

Using quantum molecular dynamic simulations, Oleg Kit of the University of Jyväskylä, Finland, and colleagues have tried to answer this timely question. As they report in Physical Review B, carbon nanotubes might be fabricated using graphene ribbons; not by simply rolling them up, but by mechanically twisting them. According to their calculations, a sufficiently twisted graphene ribbon starts to develop chemical bonding between the carbon atoms at opposite edges. The bonding provides the necessary force to zip up the graphene membrane.

An important result of their study is that the chirality of the nanotubes could be tuned by the strain applied to create a twist. One practical extension of Kit et al.’s work, which should be applicable to other nanoscale planar objects, is the encapsulation of molecules in carbon nanotubes. – Hari Dahal


Subject Areas

NanophysicsGraphene

Related Articles

Shape Matters in Self-Assembly
Nanophysics

Shape Matters in Self-Assembly

A theoretical study of self-assembly finds that hexagon-shaped building blocks can form large structures faster than triangular or square blocks. Read More »

Levitated Nanoresonator Breaks Quality-Factor Record
Nanophysics

Levitated Nanoresonator Breaks Quality-Factor Record

A nanoresonator trapped in ultrahigh vacuum features an exceptionally high quality factor, showing promise for applications in force sensors and macroscopic tests of quantum mechanics.  Read More »

Long-Range Resonances Slow Light in a Photonic Material
Nanophysics

Long-Range Resonances Slow Light in a Photonic Material

Light–matter interactions in certain one-dimensional photonic materials can bring light nearly to a standstill, an effect that researchers show requires consideration of long-range interactions between the material’s components. Read More »

More Articles