Synopsis

Thinking Inside the Box

Physics 5, s72
Finding the optimal solution to filling a volume with spheres could be useful for modeling nanoparticles.
C. L. Phillips et al., Phys. Rev. Lett. (2012)

Deceptively simple questions like “How many gumballs fit in a box?” or “How many stamps does it take to cover an orange?” are at the heart of some really hard problems in applied mathematics; namely, the “packing problem” and the “covering problem.” Writing in Physical Review Letters, Carolyn Phillips at the University of Michigan, Ann Arbor, and colleagues take steps to tackle filling, a new optimization problem in between packing and covering.

A two-dimensional version of the question Phillips et al. address might be posed like this: Imagine you have a square window and you want to block out as much light as possible by taping some opaque circular tiles to the glass. You can use a mixture of tiles with any radius, and they can overlap with each other, but you only have money to buy five. As a general optimization problem, this amounts to asking “What is the best way to place N overlapping circles (or, in 3D, spheres) of any size within a bounded area (volume) so as to fill it?”

The authors show that for a given shape, they only need to consider solutions where the circles or spheres lie on the shape’s medial axis—a linelike representation of the shape’s topology—and, as an example, present a numerical strategy for optimally filling 2D polygons with N circles.

Phillips et al. became interested in the filling problem as a means to help them model interactions between nanoparticles, which can be approximated as rigid bodies of overlapping spheroids. But the work could, according to the authors, be applicable to computer animation, where graphic artists look for ways to describe complex shapes with a minimum of simple, overlapping volumes. – Jessica Thomas


Subject Areas

NanophysicsSoft Matter

Related Articles

Controllable Topological Vortex Lattices
Complex Systems

Controllable Topological Vortex Lattices

Liquid crystals can be coaxed into hosting an easily reconfigurable lattice of vortices useful for information encoding. Read More »

Pinned Particles Impede Crystallization
Condensed Matter Physics

Pinned Particles Impede Crystallization

Experiments challenge the assumption that crystals form more easily when some of the constituent particles are fixed in place. Read More »

Cheese Flowers Are Shaped by Friction
Soft Matter

Cheese Flowers Are Shaped by Friction

Scraping the surface of a Tête de Moine cheese wheel produces frilly ribbons whose flower-like forms depend on the local friction. Read More »

More Articles