Synopsis

Discrepancy in Neutron Lifetime Still Unresolved

Physics 6, s150
Precision measurements of the neutron lifetime differ by about 8 seconds.

Outside of the nucleus, the proton remains stable for at least 1034 years, but an isolated neutron survives just 15 minutes before it decays into a proton, electron, and an antineutrino. Astrophysicists rely on a precise value of the free neutron lifetime to calculate the rate of nucleosynthesis during the big bang, while particle physicists use it to constrain fundamental parameters of the standard model. Yet measured lifetimes have varied by about a percent, depending on the experimental technique. As reported in Physical Review Letters, the latest refinement of the neutron lifetime in one type of experiment has left this discrepancy unresolved.

Researchers have relied on two experimental strategies to measure the neutron lifetime. In the “bottle” method, low-energy neutrons are confined in a trap constructed from magnetic fields or wall materials like beryllium that reflect neutrons. The neutron lifetime can be determined by simply counting the number of particles that survive after a fixed storage time. The alternative is the “in-beam” method, in which a beam of neutrons with a precisely known flux travels through a well-defined volume, and the lifetime is determined by counting the number of decay products.

The two types of experiments give a neutron lifetime that differs by 8 seconds (or 2.6 standard deviations)—a discrepancy that researchers have chalked up to unresolved systematic errors. As a first step, scientists working at the NIST Center for Neutron Research in Gaithersburg, Maryland, have now refined their earlier in-beam measurement from 2005 with a more accurate value of the neutron flux (the largest uncertainty in the original experiment) by recalibrating their original neutron detector. The NIST researchers now report an in-beam neutron lifetime of 887.7±2.3s, in agreement with their previously measured value, but raising the significance of the discrepancy to 3.8 standard deviations. – Kevin Dusling

Correction (2 December 2013): Paragraph 3, sentence 1, “2.9 standard deviations” changed to “2.6 standard deviations.”


Subject Areas

Nuclear Physics

Related Articles

A Route Toward the Island of Stability
Nuclear Physics

A Route Toward the Island of Stability

Scientists have synthesized an isotope of the superheavy element livermorium using a novel fusion reaction. The result paves the way for the discovery of new chemical elements. Read More »

Heavy Element Formation Limited in Failed Supernovae
Fluid Dynamics

Heavy Element Formation Limited in Failed Supernovae

Despite its intensity, the gravitational collapse of certain massive stars does not produce an abundance of heavy elements. Read More »

Positron Emission Tomography Could Be Aided by Entanglement
Medical Physics

Positron Emission Tomography Could Be Aided by Entanglement

The quantum entanglement of photons used in positron emission tomography (PET) scans has been shown to be surprisingly robust, opening prospects for developing quantum-enhanced PET schemes. Read More »

More Articles