Notes from the Editors

BICEP2 Images the Past, Cosmology Looks to the Future

Physics 7, 66
BICEP2’s report of possible evidence for cosmic inflation has been published in Physical Review Letters. A special Viewpoint commentary and Focus story put the result in context.
Steffen Richter/Harvard University
The BICEP2 telescope at twilight, which occurs only twice a year at the South Pole.

Until a few months ago, a picture of a newly born Universe only existed in our imaginations. But on March 17th, 2014, researchers running the BICEP2 experiment at the South Pole announced that the ripples of an event occurring a mere 10-36 seconds after the big bang may have been detected in their telescope. The measured signal potentially provided the first convincing evidence in support of cosmic inflation, the theory that predicts the early Universe underwent a period of rapid, exponential expansion.

Cosmologists were elated, if cautious. Everyone acknowledged that BICEP2’s extraordinary result had to be confirmed by independent experiments. And many pointed out that the detected signal—a polarization in the cosmic microwave background—could be a more mundane artifact in disguise, resulting, for instance, from dust in our galaxy.

Independently obtained data are on the way, and BICEP2’s interpretation will be subject to more scrutiny, but today, Physical Review Letters announces that the team’s experimental findings have passed the hurdle of peer review and can now be published. This special issue of Physics explores two aspects of the BICEP2 result. In a Viewpoint commentary, theoretical physicist Lawrence Krauss explains the experimental finding, describing how a rapidly expanding Universe would have left its imprint on the cosmic microwave background radiation captured by BICEP2’s telescope. A companion Focus story from physicist and author David Lindley looks at the theoretical ramifications of the result, which are primarily expected to impact cosmology, but could also have implications for particle physics and our understanding of dark matter.

Most important discoveries do not come ready-made for textbooks, and extensive work is still needed to verify the origin of BICEP2’s measured polarization signal. But BICEP2’s result sets the stage for experiments yet to come and an exciting time in cosmology.

– The Editors

Recent Articles

Temperature Affects Aging in Granular Materials
Soft Matter

Temperature Affects Aging in Granular Materials

Experiments on a bed of plastic beads reveal a temperature-dependent stiffening over time, which appears to be related to molecular-scale deformations. Read More »

Podcast: The Sounds of Data

Podcast: The Sounds of Data

Sonification and other multisensorial approaches offer powerful tools to analyze data, help visually impaired researchers, communicate science, and create science-inspired art. Read More »

An Elusive Black Hole Comes into View

An Elusive Black Hole Comes into View

Observations of seven fast-moving stars at the center of a dense star cluster in the Milky Way reveal the presence of an intermediate-mass black hole, perhaps the most puzzling class of these dark objects. Read More »

More Articles