Synopsis

How to Tame a Trojan Horse

Physics 8, s103
Researchers propose an approach to safeguard optical quantum key distribution systems against Trojan-horse attacks.

Like its ancient namesake, a Trojan-horse attack is a ploy to penetrate a securely protected space. In the context of optical quantum key distribution (QKD) protocols, the attack involves “Trojan photons” sneaking into a QKD system in an attempt to learn the encryption key. Optical elements that require no external power to operate have been suggested as a way to halt these intrusions. But so far, researchers have lacked a method to quantify how effective such a passive defense system could be. Andrew Shields from Toshiba Research Europe Limited, UK, and colleagues have now come up with just such a method by looking at the Trojan-horse attack in terms of a problem of leakage of quantum information.

In optical QKD, a transmitter sends a quantum encryption key, encoded on photons, to a receiver. Shields and co-workers propose an optical QKD system comprising a sequence of passive components at the transmitter end. These components filter and attenuate photons that don’t come from the transmitter, limiting the number of Trojan photons that can be injected into and retrieved from the system by an attacker. As a result, they curb the amount of information that is leaked to the attacker through the retrieval of the Trojan photons. This entirely passive approach has practical advantages over active architectures. Compared to their passive counterparts, active protocols typically add extra complexity to the QKD setup, may provide more “wiggle room” to the attacker, and are generally more expensive.

This research is published in Physical Review X.

–­Ana Lopes


Subject Areas

Quantum InformationQuantum Physics

Related Articles

Detecting Individual Nuclear Spins
Condensed Matter Physics

Detecting Individual Nuclear Spins

An optical cavity amplifies the signatures of specific nuclei in an atomic lattice. Read More »

Creating Entangled Pairs of Microwave Photons
Quantum Physics

Creating Entangled Pairs of Microwave Photons

Researchers have demonstrated a method to make entangled microwave photons from the entangled electrons in superconductors. Read More »

Cold-Trapped Atoms Stay Trapped Longer
Quantum Information

Cold-Trapped Atoms Stay Trapped Longer

By housing an optical tweezer array inside a cryogenic vacuum chamber, researchers have trapped rubidium Rydberg atoms for up to 50 minutes. Read More »

More Articles