Synopsis

Connecting Qubits with Sound

Physics 8, s104
Surface acoustic waves may work as a “quantum bus” that carries information to different parts of a quantum computer.

As quantum computers eventually become larger, they will need a way to connect distant qubits. Sound waves that skirt along a surface may provide a solution. A new theoretical analysis details how surface acoustic waves (SAWs) can be coupled to qubits embedded in a micrometer-scale acoustic cavity. Through this coupling, the SAWs can act as a “quantum bus,” relaying information over SAW waveguides.

Photons have been a natural choice for carrying quantum information, and recent experiments have connected two qubits with microwave photons inside a millimeter-long cavity. A possible alternative medium is acoustic phonons, which can potentially couple to qubits in chip-compatible cavities that are much smaller than those used for photons.

Previous work on phonon-qubit coupling has largely focused on phonons localized within cantilevers or similar resonators. Ignacio Cirac of the Max Planck Institute for Quantum Optics, Germany, and his colleagues explored the potential of SAWs. These surface-bound “ripples” can be confined in cavities by grooves that act like mirrors. And—unlike phonon modes in a cantilever—SAWs can travel long distances over surface-etched waveguides. To couple SAW phonons to a qubit, Cirac and his collaborators modeled a SAW cavity in which the surface material is piezoelectric. SAWs inside such a cavity would generate an oscillating electric field, which could interact with a nearby qubit—no matter what type it is. This “universality” implies that a qubit made from quantum dots, for example, could transfer its information to a SAW phonon, and this phonon could deliver the information to a distant qubit that might be a trapped atom or other type qubit.

This research is published in Physical Review X.

–Michael Schirber


Subject Areas

Quantum InformationAcoustics

Related Articles

A Simple Electronic Circuit Manifests a Complex Physical Effect
Atomic and Molecular Physics

A Simple Electronic Circuit Manifests a Complex Physical Effect

Using a single set of measurements of an electronic circuit, researchers have characterized the properties of the topologically protected edge states of a quantum Hall system. Read More »

Spider-Inspired Microphone Detects Tiny Gusts of Sound
Acoustics

Spider-Inspired Microphone Detects Tiny Gusts of Sound

A small device senses sounds using a spiderweb-like design—a strategy that could lead to chip-size microphones that are less affected by thermal noise. Read More »

Informing Potential Remedies for Quasiparticle Poisoning
Quantum Information

Informing Potential Remedies for Quasiparticle Poisoning

Measurements of the temperature distribution of quasiparticles in superconducting circuits reveal behavior that could inform strategies for mitigating quasiparticle-induced errors in superconducting qubits. Read More »

More Articles