Synopsis

Staying Cool in Outer Space

Physics 8, s40
In the absence of gravity, surface tension forces affect how fluids flow in heat pipes and may limit the device’s cooling performance on spacecraft missions.
STS-119 Shuttle Crew/NASA

A heat pipe transfers heat between two surfaces by evaporating liquid at one end and condensing it at the other. The pipes don’t involve any prone-to-failure mechanical parts, nor require any power, so they are important cooling components in spacecraft for long-distance missions. But experiments on the International Space Station now indicate that the cooling devices behave in a surprising way in the absence of gravity. The results reveal that the device’s performance, such as how fast it can transfer heat, is limited by different mechanisms in space than on Earth.

Joel Plawsky at the Rensselaer Polytechnic Institute, New York, and his colleagues investigated the conditions that set a heat pipe’s safety and operational limits. They imaged the interior of a few-centimeter-long transparent pipe containing pentane while they heated one end to almost 523K (the self-ignition temperature of the liquid when exposed to air). On Earth, cooling performance drops at temperatures that cause the liquid to evaporate too quickly and the pipe’s hot end to dry out. In space, however, the researchers found that at similar temperatures, the opposite occurs: the pipe’s hot end, instead of drying out, is flooded by liquid. This occurs because of the competing contribution of so-called Marangoni forces, which push fluid between regions with different surface tension: the cold and the hot ends of the device. The Marangoni effect is usually swamped by gravity on Earth but becomes dominant in space. The finding calls for new theoretical tools to describe how interfacial forces affect the behavior of heat pipes, particularly for space applications in which temperature differences can be very large, such as the cooling of propulsion components.

This research is published in Physical Review Letters.

–Matteo Rini


Subject Areas

AstrophysicsFluid Dynamics

Related Articles

Pitch-Perfect Corrections for Turbulence
Fluid Dynamics

Pitch-Perfect Corrections for Turbulence

A new system could allow autonomous aircraft to correct the pitch of their wings to account for gusts of wind that abruptly change lift in real time. Read More »

Stuffing Water into Bird Feathers
Biological Physics

Stuffing Water into Bird Feathers

Researchers have uncovered the details of how the feathers of a desert sandgrouse absorb water, a finding that could aid in the design of water-storing artificial materials. Read More »

Another Way for Black Holes to Evaporate
Astrophysics

Another Way for Black Holes to Evaporate

The gravitational fields of black holes and other compact objects are strong enough that they might wrest massless particles out of the vacuum and into existence, causing the objects to decay. Read More »

More Articles