Synopsis

Staying Cool in Outer Space

Physics 8, s40
In the absence of gravity, surface tension forces affect how fluids flow in heat pipes and may limit the device’s cooling performance on spacecraft missions.
STS-119 Shuttle Crew/NASA

A heat pipe transfers heat between two surfaces by evaporating liquid at one end and condensing it at the other. The pipes don’t involve any prone-to-failure mechanical parts, nor require any power, so they are important cooling components in spacecraft for long-distance missions. But experiments on the International Space Station now indicate that the cooling devices behave in a surprising way in the absence of gravity. The results reveal that the device’s performance, such as how fast it can transfer heat, is limited by different mechanisms in space than on Earth.

Joel Plawsky at the Rensselaer Polytechnic Institute, New York, and his colleagues investigated the conditions that set a heat pipe’s safety and operational limits. They imaged the interior of a few-centimeter-long transparent pipe containing pentane while they heated one end to almost 523K (the self-ignition temperature of the liquid when exposed to air). On Earth, cooling performance drops at temperatures that cause the liquid to evaporate too quickly and the pipe’s hot end to dry out. In space, however, the researchers found that at similar temperatures, the opposite occurs: the pipe’s hot end, instead of drying out, is flooded by liquid. This occurs because of the competing contribution of so-called Marangoni forces, which push fluid between regions with different surface tension: the cold and the hot ends of the device. The Marangoni effect is usually swamped by gravity on Earth but becomes dominant in space. The finding calls for new theoretical tools to describe how interfacial forces affect the behavior of heat pipes, particularly for space applications in which temperature differences can be very large, such as the cooling of propulsion components.

This research is published in Physical Review Letters.

–Matteo Rini


Subject Areas

AstrophysicsFluid Dynamics

Related Articles

Ocean Measurements Detect Conditions for Giant Waves
Fluid Dynamics

Ocean Measurements Detect Conditions for Giant Waves

Observations of the Southern Ocean show that wind can produce the surface states needed to generate rare “rogue” waves. Read More »

A Pathway to Making Molecular Oxygen That Doesn’t Involve Life
Astrophysics

A Pathway to Making Molecular Oxygen That Doesn’t Involve Life

Researchers have quantified a pathway for the formation of molecular oxygen from the interaction of carbon dioxide with electrons, key information for searches of life on other worlds. Read More »

Exploring the Black Hole Population with an Open Mind
Gravitation

Exploring the Black Hole Population with an Open Mind

A new model describes the population of black hole binaries without assumptions on the shape of their distribution—a capability that could boost the discovery potential of gravitational-wave observations. Read More »

More Articles