Synopsis

Mid-Infrared Lasers Probe Atomic Structure

Physics 8, s73
Researchers have imaged the structure and the response of atoms and molecules with powerful mid-infrared electric fields.
B. Wolter et al., Phys. Rev. X (2015)

Time-resolved imaging of atoms and molecules is critical for understanding chemical reactions. To acquire such images, researchers typically bombard atoms or molecules with short laser pulses and then measure the emitted electron distribution. These pulses are often provided by near-infrared Ti:sapphire lasers because they are more readily available, but the data are ambiguous to interpret. Now, researchers in Jens Biegert’s group at The Institute of Photonic Sciences (ICFO) in Barcelona have overcome these problems and investigated atomic and molecular structure using a unique setup that combines a mid-infrared laser source with a 3D detector.

The authors study ionization in the strong-field regime, in which the laser pulse distorts the electric field of the atom, allowing an electron to tunnel into the vacuum. The emitted electron accelerates within the strong electric field of the laser before recolliding with its parent ion and either recombining or scattering. Compared to shorter-wavelength pulses, mid-infrared pulses allow electrons to tunnel from the atom at much lower intensities, thus avoiding excessive ionization of the atom. The electric fields of longer-wavelength lasers also accelerate the electrons for more time, which results in a quadratic increase in the electron energy. This provides the ability to probe nuclear rather than solely electronic structure, with unprecedented spatial and energy resolution.

To demonstrate the technique, the researchers shone a 3.1-micrometer laser into a cold, diffuse xenon gas to produce electrons and Xe + and Xe 2+ ions. They measured the arrival times and positions of the emitted electrons using a detector that recorded the charges’ momenta in three dimensions and over six orders of magnitude of energy. In a separate work, Biegert and his team demonstrated that their technique can be used to reveal the spatial arrangement of atoms within acetylene molecules.

This research is published in Physical Review X.

–Katherine Kornei


Subject Areas

Atomic and Molecular PhysicsParticles and Fields

Related Articles

Erbium Atoms in an Optical Tweezer Array
Atomic and Molecular Physics

Erbium Atoms in an Optical Tweezer Array

Erbium and similar elements provide a wide range of electronic “handles” for manipulating atoms in many-body quantum experiments. Read More »

Measuring the Spectrum of High-Energy Cosmic-Ray Electrons
Particles and Fields

Measuring the Spectrum of High-Energy Cosmic-Ray Electrons

A new analysis of more than a decade’s worth of observations extends the spectrum of cosmic-ray electrons to unprecedented high energies. Read More »

Sharpening the <i>B</i>-Meson Anomalies
Particles and Fields

Sharpening the B-Meson Anomalies

A new analysis of B-meson decays strongly hints that they harbor physics beyond the standard model. Read More »

More Articles