Synopsis

Explaining a 750 GeV Bump

Physics 9, s40
Theorists try to explain data from the LHC that could be hinting at the existence of new particles.
Y. Nakai et al., Phys. Rev. Lett. (2016)

Late last year, two collaborations at the LHC reported hints that proton-proton collisions created more photon pairs (diphotons) than expected with energies of about 750 GeV (in the diphoton’s rest frame). Such a “bump” in the diphoton spectrum is very much like the signal that led to the discovery of the Higgs boson. The difference is that no one was expecting another such bump. If confirmed, it would imply the existence of surprising new particles.

This exciting hint has generated many theory papers (see Physical Review Letters’ Editorial: “Theorists React to the CERN 750 GeV Diphoton Data”). Most of the models proposed contain a new 750 GeV boson—6 times heavier than the Higgs boson—plus some other particles, such as new fermions that would couple the new boson to pairs of photons and to pairs of gluons generated by the LHC’s colliding protons.

Now, a quartet of papers, appearing in the same issue of Physical Review Letters, attempt to explain the origin of the 750 GeV signal. Three papers are centered around some new 750 GeV boson: a pion-like boson associated with a new type of strong force (Y. Nakai, R. Sato, and K. Tobioka), a Higgs-like boson that couples to new kinds of fermions (G. Li et al.), or a boson that is the supersymmetric partner of a hypothetical fermion called the goldstino (C. Petersson and R. Torre). The fourth paper (W. S. Cho et al.) explores the possibility that the diphoton excess is not due to a 750 GeV particle at all, but to some even heavier particles that decay via a cascade to lighter particles along with photon pairs of about 750 GeV.

By the fall of 2016, the LHC should have collected enough data to determine whether the hint is a real signal or a statistical fluctuation. If the former, researchers will eagerly delve into deciphering the new physics behind the signal.

This research is published in Physical Review Letters.

–Robert Garisto


Subject Areas

Particles and Fields

Related Articles

First Direct Detection of Electron Neutrinos at a Particle Collider
Particles and Fields

First Direct Detection of Electron Neutrinos at a Particle Collider

Electron neutrinos produced by proton–proton collisions at the LHC have been experimentally observed. Read More »

Dark Matter Could Bring Black Holes Together
Astrophysics

Dark Matter Could Bring Black Holes Together

Dark matter that interacts with itself could extract significant momentum from a binary supermassive black hole system, causing the black holes to merge. Read More »

The Most Precise Value of the Top-Quark Mass to Date
Particles and Fields

The Most Precise Value of the Top-Quark Mass to Date

Researchers at CERN have significantly increased the precision of the measured value of the top-quark mass, a key input for making standard-model calculations. Read More »

More Articles