Synopsis: Anisotropy Defying Crystal Symmetry

Microscopic distribution of alloy constituents explains the puzzling magnetic anisotropy in (Ga,Mn)As films.
Synopsis figure
M. Birowska et al., Phys. Rev. Lett. (2012)

Much can be understood about the properties of a material just by analyzing the symmetry of its crystal structure with the tools of group theory. The conclusions of such an analysis for a given bulk material are often assumed to hold for its alloys too, but it is unclear if this is true when the distribution of added alloy constituents is not strictly random. An example is the dilute magnetic semiconductor (Ga,Mn)As, which exhibits in-plane magnetocrystalline anisotropy, even though the GaAs lattice symmetry does not allow it.

In Physical Review Letters, Magdalena Birowska at the University of Warsaw, Poland, and colleagues report calculations showing that a nonrandom distribution of magnetic ions in the dilute magnetic semiconductor (Ga,Mn)As can in fact explain the observed anisotropy. With the help of quantitative predictions from ab initio calculations and symmetry analysis they show that the puzzling anisotropy is caused by the preferred formation of manganese dimers along a specific crystalline direction at the growth surface. This work suggests that magnetic anisotropy could be controlled by varying the layer-by-layer growth of the material. In more general terms, the authors have shown how a specific microscopic distribution of constituents may affect the symmetry properties and macroscopic behavior of alloys in ways that go beyond the standard group theory analysis. – Athanasios Chantis


Features

More Features »

Announcements

More Announcements »

Subject Areas

SpintronicsMaterials Science

Previous Synopsis

Atomic and Molecular Physics

The Gravitational Aharonov-Bohm Effect

Read More »

Next Synopsis

Related Articles

Focus: Germanium Revived from the Spintronics Graveyard
Spintronics

Focus: Germanium Revived from the Spintronics Graveyard

Germanium produces a surprisingly large separation of electron spins in response to electric current—good news for spin-based devices, since germanium is highly compatible with silicon. Read More »

Synopsis: A Crystal Ball for 2D Materials
Materials Science

Synopsis: A Crystal Ball for 2D Materials

Researchers predict new two-dimensional materials whose structures differ from their three-dimensional counterparts. Read More »

Viewpoint: Electron Pulses Made Faster Than Atomic Motions
Atomic and Molecular Physics

Viewpoint: Electron Pulses Made Faster Than Atomic Motions

Electron pulses have shattered the 10-femtosecond barrier at which essentially all atomic motion is frozen in materials. Read More »

More Articles