Synopsis: Second Law in an Optical Cavity and a BEC

Physicists observe entropy production in two intermediate-scale quantum systems, indicating that the systems have undergone an irreversible process.  
Synopsis figure
M. Brunelli/University of Cambridge

In the continuum from quantum to classical, there exists a paradox. Classical machines like heaters cannot run in reverse—and effectively act as refrigerators—without extra energy. Such a scenario would violate the second law of thermodynamics, which states that entropy must always increase. In contrast, the equations of quantum mechanics imply that quantum processes can run in reverse. Currently, researchers are unclear on how to reconcile the two frameworks. To that end, Matteo Brunelli of the University of Cambridge in the UK and colleagues experimentally studied two intermediate-scale quantum systems—a Bose-Einstein condensate made of 100,000 rubidium atoms and an optomechanical cavity weighing less than a millionth of a gram. They placed each system in contact with two heat reservoirs. In both cases, they found that entropy increased as energy flowed in and out of the system. The result indicates that intermediate-scale quantum systems behave irreversibly, like classical machines.

Because entropy production cannot be directly measured, the team first developed a theoretical framework to calculate entropy from energy. Then they used this framework to infer entropy production resulting from the energy exchange between the BEC and two heat reservoirs and between the cavity and two reservoirs. Measuring the energies of the two systems, they found that the entropy increased in both. The team studied these two systems because they both mathematically resemble coupled quantum harmonic oscillators in contact with two heat reservoirs. The team says that, in the future, they plan to monitor the entropy of both systems with finer time resolution in order to observe the systems as they approach steady state.

This research is published in Physical Review Letters.

–Sophia Chen

Sophia Chen is a freelance science writer based in Tucson, Arizona.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Atomic and Molecular PhysicsQuantum PhysicsStatistical Physics

Previous Synopsis

Next Synopsis

Related Articles

Synopsis: Could Levitated Nanoparticles Test Spontaneous Wave-Function Collapse?
Quantum Physics

Synopsis: Could Levitated Nanoparticles Test Spontaneous Wave-Function Collapse?

The motion of hovering nanoparticles might reveal that quantum wave functions collapse spontaneously, but three common measurement methods are not ready for prime time. Read More »

Viewpoint: Ion Clock Busts into New Precision Regime
Atomic and Molecular Physics

Viewpoint: Ion Clock Busts into New Precision Regime

An aluminum ion clock has a fractional-frequency uncertainty of less than one part in 1018, a four-decades-long goal in precision. Read More »

Synopsis: How Fluids Flow When the Temperature Changes
Fluid Dynamics

Synopsis: How Fluids Flow When the Temperature Changes

Physicists develop a theory to make the seemingly random, thermally driven motion of particles in fluids predictable. Read More »

More Articles