Synopsis: Entangled Photon Source Ticks All Boxes

A quantum-dot-based device combines all of the attributes necessary for producing a reliable source of entangled photons for quantum information applications. 
Synopsis figure
C.-Y. Lu/ University of Science and Technology of China

Quantum photonic technologies require sources that create entangled, indistinguishable pairs of photons on demand that can be extracted from the source at a high rate. Previous experiments have achieved each of these four criteria individually, or in some combination, but have fallen short of fulfilling them all. For example, the method of creating entangled pairs by splitting a single high-energy photon into two—so-called spontaneous parametric down-conversion—lacks the capability to generate such photons on demand. Now, Hui Wang at the University of Science and Technology of China and colleagues demonstrate a semiconductor quantum-dot photon emitter that simultaneously achieves all the requirements in a single device.

The team illuminated an InGaAs quantum dot with a laser, producing an excited state made from two electron-hole pairs. When this state decayed back to the ground state, it yielded a pair of indistinguishable, entangled photons. The dot was embedded in the center of a circular grating, which functioned as a resonant cavity, enhancing photon emission and directing the entangled photons toward a lens, where they were collected. Using this scheme, the team avoided the disadvantage of other quantum-dot sources, which typically have poor photon extraction efficiency, as most of the photons generated by the dots are lost into the device.

The experiment’s performance is no record breaker by any individual measure. But this device is the first “all-rounder” and, as such, the team says, represents a significant milestone for quantum photonic applications. By refining the setup, the researchers hope to improve its capability on all four fronts, allowing for its eventual use in technologies such as quantum communication networks and optical quantum computers.

This research is published in Physical Review Letters.

–Marric Stephens

Marric Stephens is a freelance science writer based in Bristol, UK.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum PhysicsQuantum Information

Previous Synopsis

Next Synopsis

Related Articles

Synopsis: Quantum Teleportation Now Comes in 3D
Quantum Information

Synopsis: Quantum Teleportation Now Comes in 3D

The first experiment to teleport qutrits rather than qubits paves the way to teleporting the complete quantum state of a particle. Read More »

Viewpoint: A Random Approach to Quantum Simulation
Quantum Information

Viewpoint: A Random Approach to Quantum Simulation

A new way to simulate a molecule is potentially much faster than other approaches because it relies on random—as opposed to deterministic—sequences of operations. Read More »

Focus: Entangling Photon Sources on a Tiny Bridge
Photonics

Focus: Entangling Photon Sources on a Tiny Bridge

Researchers entangled a pair of atomic-scale light emitters in a micrometer-scale device, which could potentially be useful for quantum communication and cryptography. Read More »

More Articles