Synopsis: Quantum Teleportation Now Comes in 3D

The first experiment to teleport qutrits rather than qubits paves the way to teleporting the complete quantum state of a particle.
Synopsis figure
R. Zhou/USTC

Quantum teleportation is the transfer of quantum information—for instance, a particle’s quantum state—between distant systems without moving a physical particle. All demonstrations of the phenomenon so far have transferred the state of a qubit—a simple two-level system. This is a far cry from teleporting the complete quantum state of a particle, involving multiple degrees of freedom, each with many possible values. A collaboration between groups at the University of Science and Technology of China, Hefei, and at the University of Vienna has taken a step towards that goal by demonstrating the transfer of a 3D quantum state, or qutrit.

The team shared a pair of entangled photons between the transmitter (Alice) and the receiver (Bob). Each photon could take one of three possible paths whose superposition yielded a 3D entangled state, a qutrit. An additional photon at Alice’s end—also in a 3D quantum state—provided the state to be teleported. The researchers made this third photon interfere with Alice’s half of the entangled pair and performed a state measurement on all three. This measurement resulted in the transfer of the 3D state to the photon held by Bob.

The scheme may be useful in high-speed quantum communications, since a qutrit can carry more information than a qubit. The approach could be generalized to teleport quantum states involving any degree of freedom with more than two levels (photon orbital angular momentum, for example). The authors also suggest that they could extend their scheme to an arbitrarily high number of dimensions by adding more paths for the photons. These features could eventually allow the complete state of a complex quantum particle to be transferred.

This research is published in Physical Review Letters.

–Marric Stephens

Marric Stephens is a freelance science writer based in Bristol, UK.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum InformationQuantum Physics

Previous Synopsis

Materials Science

Static Electricity Needs Water

Read More »

Next Synopsis

Topological Insulators

Toward Topological Protection with Qubits

Read More »

Related Articles

Synopsis: Entanglement in Broad Daylight
Quantum Information

Synopsis: Entanglement in Broad Daylight

Photons entangled in high dimensions are more resilient to noise, making them ideal for quantum communication applications. Read More »

Viewpoint: Fluxonium Steps up to the Plate
Quantum Information

Viewpoint: Fluxonium Steps up to the Plate

A decade-old alternative to the leading superconducting qubit exhibits the coherence times needed for applications. Read More »

Synopsis: A Time Crystal Without a Driver
Quantum Physics

Synopsis: A Time Crystal Without a Driver

A calculation shows that an elusive, isolated quantum time crystal may not be far from reality.   Read More »

More Articles