Synopsis: Pathway to Quantum Thermalization

Experiments involving a magnetic quantum Newton’s cradle provide insights into how interacting quantum particles achieve thermal equilibrium.

The role of chaotic motion in the thermal equilibration of classical systems is well understood—there is little mystery in how cold milk and hot coffee warm and cool to reach the same temperature. But the same is not true for thermalizing quantum systems, where chaos’s function is unexplained. Now, in experiments and simulations, Benjamin Lev, from Stanford University, California, and colleagues show how the onset of chaotic motion drives interacting quantum particles to thermal equilibrium. This insight may help in the design of technological devices that rely on nonequilibrium quantum effects.

To explore the problem, the team turned to a quantum Newton’s cradle. This apparatus is modeled on the desk toy that consists of a line of suspended metal balls that can be set to swing in different periodic patterns. In a quantum Newton’s cradle, atoms replace the balls, and lasers confine the atoms in a row. Additional lasers kick the atoms into motion, causing them to oscillate back and forth as in the toy. However, unlike the toy, the atoms can both collide and pass through one another because of the oddities of quantum physics.

The team built 700 individual magnetic quantum Newton’s cradles using dysprosium atoms. Because dysprosium is highly magnetic, the atoms in each cradle interacted with one another via magnetic forces. The team tuned the strength of these interactions by changing the orientation of each atom’s magnetic dipole via an applied magnetic field. As the strength of the interaction increased, the team observed that the motion of each cradle’s atoms transitioned from periodic to chaotic. Then the momentum distribution of the atoms rapidly approached a thermal distribution, indicating the system was equilibrating. These results provide critical data for researchers pursuing a general theory of quantum thermalization.

This research is published in Physical Review X.

–Christopher Crockett

Christopher Crockett is a freelance writer based in Montgomery, Alabama.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum PhysicsAtomic and Molecular Physics

Previous Synopsis

Atomic and Molecular Physics

Time Crystals Multiply

Read More »

Next Synopsis

Biological Physics

Untying DNA Knots

Read More »

Related Articles

Synopsis: Interrupting Flow in a 2D Topological Insulator
Topological Insulators

Synopsis: Interrupting Flow in a 2D Topological Insulator

Theorists predict that backscattering of electrons by nonmagnetic impurities can disrupt current flow in a 2D topological insulator, in agreement with experiments. Read More »

Viewpoint: Alkaline Atoms Held with Optical Tweezers
Quantum Information

Viewpoint: Alkaline Atoms Held with Optical Tweezers

Three separate groups demonstrate the trapping of two-electron atoms in arrays of optical tweezers, opening up new opportunities for quantum simulation and many-body studies. Read More »

Viewpoint: The Quest to Make a Ferromagnet with Cold Atoms
Magnetism

Viewpoint: The Quest to Make a Ferromagnet with Cold Atoms

Experimentalists working with cold atoms are closing in on the famous Stoner model of ferromagnetism. Read More »

More Articles