Notes from the Editors: BICEP2 Images the Past, Cosmology Looks to the Future

Physics 7, 66
BICEP2’s report of possible evidence for cosmic inflation has been published in Physical Review Letters. A special Viewpoint commentary and Focus story put the result in context.
Steffen Richter/Harvard University
The BICEP2 telescope at twilight, which occurs only twice a year at the South Pole.

Until a few months ago, a picture of a newly born Universe only existed in our imaginations. But on March 17th, 2014, researchers running the BICEP2 experiment at the South Pole announced that the ripples of an event occurring a mere 10-36 seconds after the big bang may have been detected in their telescope. The measured signal potentially provided the first convincing evidence in support of cosmic inflation, the theory that predicts the early Universe underwent a period of rapid, exponential expansion.

Cosmologists were elated, if cautious. Everyone acknowledged that BICEP2’s extraordinary result had to be confirmed by independent experiments. And many pointed out that the detected signal—a polarization in the cosmic microwave background—could be a more mundane artifact in disguise, resulting, for instance, from dust in our galaxy.

Independently obtained data are on the way, and BICEP2’s interpretation will be subject to more scrutiny, but today, Physical Review Letters announces that the team’s experimental findings have passed the hurdle of peer review and can now be published. This special issue of Physics explores two aspects of the BICEP2 result. In a Viewpoint commentary, theoretical physicist Lawrence Krauss explains the experimental finding, describing how a rapidly expanding Universe would have left its imprint on the cosmic microwave background radiation captured by BICEP2’s telescope. A companion Focus story from physicist and author David Lindley looks at the theoretical ramifications of the result, which are primarily expected to impact cosmology, but could also have implications for particle physics and our understanding of dark matter.

Most important discoveries do not come ready-made for textbooks, and extensive work is still needed to verify the origin of BICEP2’s measured polarization signal. But BICEP2’s result sets the stage for experiments yet to come and an exciting time in cosmology.

– The Editors

Recent Articles

Synopsis: Valley of the Dichalcogenides
Semiconductor Physics

Synopsis: Valley of the Dichalcogenides

A magnetic field can be used to change the “valley” states that emerge in certain semiconductors. Read More »

Viewpoint: Deciphering Water’s Dielectric Constant
Chemical Physics

Viewpoint: Deciphering Water’s Dielectric Constant

The combination of two spectroscopic techniques reveals the microscopic mechanisms that control the behavior of water’s dielectric constant. Read More »

Focus: 3D Structure Shrinks When Heated

Focus: 3D Structure Shrinks When Heated

The volume of a star-shaped structure decreases when baked. Combining this technology with more conventional structures could lead to materials that don't expand or contract with temperature changes. Read More »

More Articles