Focus

A Super Mix Inside Neutron Stars

Phys. Rev. Focus 22, 3
The mixture of a superconductor and a superfluid–as may occur inside a neutron star–could respond to the star’s magnetic field in ways never seen in earthly superconductors, according to a new theory. The strange material doesn’t fit into the two standard superconducting categories.
J. Thorarinson & M. Gleiser/Dartmouth College
Come together. The coexistence of a superconductor and a superfluid in a neutron star core may lead to a response to the star’s magnetic fields unlike any seen in the lab, theorists say. A computer simulation based on the new calculations shows tubes of magnetic field lines that pierce the material binding together into conglomerations. (See videos below.)

Neutron stars may harbor a mixture of two exotic states of matter–both a superconductor and a superfluid may reside in their cores. Calculations reported in the July Physical Review B show that this combination may react differently to magnetic fields than any earthly superconductors do–neither totally excluding the fields nor letting them penetrate in the usual way. This surprising response could affect the rotational motion of a neutron star.

Video courtesy of J. Thorarinson and M. Gleiser, Dartmouth College.
These unpublished simulations come from a different research team but make use of the theory described above. Each video shows magnetic fields piercing a material that is part superconductor and part superfluid. The field lines are bunched into so-called flux tubes that attract at long distances but repel at short distances. So at equilibrium they tend to be separate but bound closely together, rather than completely merged. Conventional type-II superconductor flux tubes always repel, so the simulations show both type-I and type-II characteristics.Video 1:The flux tubes are seen here end-on in red. Two large tubes with 32 times the natural flux unit were separated and then allowed to interact. The tubes break up into single-unit tubes that remain bound together.

Physicists speculate that in the center of a neutron star–the extremely dense remains of a massive star–neutrons can flow without friction. Such a superfluid state, found also in liquid helium, may explain the observed sudden increases (called glitches) in rotation speeds of neutron stars. As for the smaller number of protons in a neutron star, they too may move without friction, but being charged, their flow corresponds to a resistance-less electric current. This proton superconductor is expected to act like more common superconductors based on electrons. But a point of ongoing debate is how the superconducting region will respond to the star’s intense magnetic field. Will it act like a type-I superconductor and force magnetic fields to go around it? Or will it behave like a type-II superconductor and let fields penetrate through millions of tiny holes, called “flux tubes”? Ordinarily the choice is determined by the value of κ, a parameter that describes the collective response of the charge carriers to magnetic fields.*

Video courtesy of J. Thorarinson and M. Gleiser, Dartmouth College.
Video 2:This video shows the density of particles in the superconductor (top) and superfluid (middle), and the energy density of the combination of the two (bottom). In this case only one large flux tube is shown breaking up into a set of bound tubes with unit flux.

To answer the question, researchers cannot look at the superconductor in isolation but must address how the proton superconductor interacts with the neutron superfluid, write Mark Alford and Gerald Good of Washington University in St. Louis. Although one other team has studied some of the interaction’s effects on the superconductor [1] they didn’t look at how different couplings between the two states would affect the behavior.

Alford and Good calculated the properties of a generalized superconductor-superfluid combination, allowing for two types of interaction: one resembling a static electric force and the other resembling a magnetic force. Instead of assigning strengths to these forces, the theorists looked at the consequences of various strengths, both attractive and repulsive.

As with ordinary superconductors, the researchers found that their superconductor could be either type I or type II, depending on whether κ was much smaller or much larger than a critical value. But surprisingly, for intermediate values of κ, they found a series of new states. These states had flux tubes as in the type-II case, but the amount of magnetic field in each tube was an exact multiple of the usual value–twice, three times, and much higher multiples. If you started with a type-II superconductor and gradually decreased κ, you would see normal flux tubes coalescing to make these intermediate-size tubes. Eventually they would all collapse into one big tube–a non-superconducting region–as the material around it became type I, Alford explains.

“The paper of Alford and Good demonstrates that there is a breakdown in the type-I/type-II dichotomy,” says Egor Babaev of the University of Massachusetts at Amherst. In 2005 he and a colleague found a similar breakdown when they studied a mixture of two separate superconductors [2]. In that case, however, the flux tubes did not fuse, but instead formed conglomerations of type-II-like tubes. Interestingly, Marcelo Gleiser and his team at Dartmouth College in Hanover, New Hampshire, have used Alford and Good’s calculations in their own simulations. What they found (still unpublished) looks a lot like Babaev’s flux tube conglomerations. Even so, Gleiser says, “our simulations seem to confirm the results of Alford and Good in that we see the rich predicted behavior in the type-I/type-II boundary.”

Creating a superconductor-superfluid in the laboratory to confirm this behavior may not happen any time soon, says Babaev. But he thinks further theoretical work may lead to a signature for these new phenomena in the stars’ rotational dynamics.

* κ is defined as the depth to which magnetic fields can penetrate divided by the length over which the material can change from superconducting to non-superconducting. In conventional superconductors, κ > 1/√2 implies type-II superconductivity, while κ < 1/√2 implies type-I.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics Magazine based in Lyon, France.

References

  1. K. B. W. Buckley, M. A. Metlitski, and A. R. Zhitnitsky, “Neutron Stars as Type-I Superconductors,” Phys. Rev. Lett. 92, 151102 (2004)
  2. E. Babaev and M. Speight, “Semi-Meissner State and Neither Type-I nor Type-II Superconductivity in Multicomponent Superconductors,” Phys. Rev. B 72, 180502(R) (2005)

More Information

  • Focus story from 1999: Neutron Star’s Glitch is Physicists’ Gain


Subject Areas

AstrophysicsNuclear Physics

Related Articles

Dark Matter at Cosmic Dawn
Cosmology

Dark Matter at Cosmic Dawn

Low-frequency radio observations could allow researchers to distinguish among several dark matter models, thanks to dark matter’s influence on the early Universe. Read More »

A Route Toward the Island of Stability
Nuclear Physics

A Route Toward the Island of Stability

Scientists have synthesized an isotope of the superheavy element livermorium using a novel fusion reaction. The result paves the way for the discovery of new chemical elements. Read More »

Axion Clouds Enveloping Pulsars
Particles and Fields

Axion Clouds Enveloping Pulsars

Axions—theorized particles that could account for dark matter—could accumulate around rapidly rotating neutron stars to the point that they become detectable. Read More »

More Articles