Synopsis: Counting attosecond pulses: One, two, or many

In the generation of attosecond pulse trains, the polarization state of the driving pulse acts as a tunable gate.
Synopsis figure
Illustration: G. Sansone et al., Phys. Rev. A (2009)

The generation of attosecond light pulses has led to great advances in the field of ultrafast dynamics. So far, the attosecond pulses with the most desirable features consist of a single pulse, but the ability to generate pairs or trains of pulses with a well-determined relative phase would allow scientists to perform time-dependent measurements, such as transient absorption.

In Physical Review A, Giuseppe Sansone and colleagues at the Politecnico di Milano, Italy, in collaboration with researchers in Italy, Russia, and France describe a technique for producing single and double attosecond pulses, as well as pulse trains, with finely controlled relative amplitudes and phases. They do this by using few-cycle carrier-envelope phase stabilized pulses and by precisely controlling the polarization state of the driving pulse that generates the high harmonic field. In fact, the polarization state can both shape the characteristics of the attosecond pulses and act as a switch, or gate, for generating them.

This method for producing single, double, and multiple attosecond pulses could be applied to measuring ultrafast dynamics in a variety of media and, perhaps, electron wave-packet interferometry. – Frank Narducci


Announcements

More Announcements »

Subject Areas

Optics

Previous Synopsis

Related Articles

Focus: Strong Light Reflection from Few Atoms
Optics

Focus: Strong Light Reflection from Few Atoms

Up to 75% of light reflects from just 2000 atoms aligned along an optical fiber, an arrangement that could be useful in photonic circuits. Read More »

Synopsis: Controlling a Laser’s Phase
Optics

Synopsis: Controlling a Laser’s Phase

A compact scheme can directly modulate the phase of a laser without a bulky external modulator. Read More »

Focus: Chip Changes Photon Color While Preserving Quantumness
Photonics

Focus: Chip Changes Photon Color While Preserving Quantumness

A new device that can potentially be scaled up for quantum computing converts visible light to infrared light suitable for fiber-optic transmission without destroying the light’s quantum state. Read More »

More Articles