Synopsis: Rydberg rings

Highly excited atoms arranged in a circular lattice exhibit unusual many-particle states.
Synopsis figure
Illustration: B. Olmos et al., Phys. Rev. A (2010)

A wide variety of collective excitations and behaviors resulting from strong correlations can be studied with the use of ultracold atoms placed into optical lattice traps. In many cases, these experiments are carried out with the atoms in their ground states; however, atoms in highly excited states offer richer opportunities for controlling and studying such phenomena. Rydberg atoms, where the electrons are excited to very high quantum states and occupy spatially extended orbits, are particularly interesting in this regard. In an article in Physical Review A, Beatriz Olmos, Rosario González-Férez, and Igor Lesanovsky, from the University of Granada, Spain, and the University of Nottingham, UK, expand on earlier work [1] in which they theoretically studied Rydberg atoms in a ring lattice to examine many-particle entangled states.

The authors calculate the properties of a ring of bosonic atoms confined to a deep ring-shaped lattice with spacing much greater than the extent of the localized atomic wave function. These atoms are two-state entities where the excited state is a Rydberg level. A laser field is then used to couple the ground and excited states with a frequency slightly detuned from resonance. Olmos et al. find that this coupled system behaves like a chain of spinless fermions with dynamical properties like that of the xy model, and go on to explain how such states might be experimentally accessible. – David Voss

[1] B. Olmos, R. González-Férez, and I. Lesanovsky, Phys. Rev. Lett. 103, 185302 (2009).


Announcements

More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Next Synopsis

Strongly Correlated Materials

One-dimensional fermions out of equilibrium

Read More »

Related Articles

Viewpoint: Bose Polarons that Strongly Interact
Atomic and Molecular Physics

Viewpoint: Bose Polarons that Strongly Interact

Researchers have used impurities within a Bose-Einstein condensate to simulate polarons—electron-phonon combinations in solid-state systems. Read More »

Synopsis: Taking Pictures with Single Ions
Atomic and Molecular Physics

Synopsis: Taking Pictures with Single Ions

A new ion microscope with nanometer-scale resolution builds up images using single ions emitted one at a time from an ion trap. Read More »

Viewpoint: Squeezed Light Reengineers Resonance Fluorescence
Atomic and Molecular Physics

Viewpoint: Squeezed Light Reengineers Resonance Fluorescence

By bathing a superconducting qubit in squeezed light, researchers have been able to confirm a decades-old prediction for the resulting phase-dependent spectrum of resonance fluorescence. Read More »

More Articles