Synopsis: An old transition in a new light

New results predict that a well-known phase transition in two dimensions should also be observable optically.
Synopsis figure
Credit: E. Small et al., Phys. Rev. A (2011)

In two-dimensional systems with continuous symmetry, thermal fluctuations prevent the emergence of long-range order. Nevertheless, there is a well-known transition, first predicted by Berezinskii, Kosterlitz, and Thouless (BKT), to a topologically ordered state with a correlation function that diverges as a power law. This transition was first studied in superfluid helium films on surfaces, and more recently in two-dimensional gases of cold atoms. Now, writing in Physical Review A, Eran Small and colleages of the Weizmann Institute of Science, Rehovot, Israel, show theoretically that the BKT transition should also be observable in the propagation of light in two-dimensional arrays of nonlinear optical waveguides.

The advantages of optical implementation are in its relative simplicity and that it does not rely on low-temperature experiments. Since the nonlinear Schrödinger equation describing propagation in a discrete two-dimensional set of waveguides is nonintegrable, the resulting motion in phase space is ergodic. An effective temperature can thus be defined and controlled by changing the input phase structure of the light injected into the array, opening the possibility of experimental verification. Beyond studying the BKT transition, this insight may facilitate studies of other interesting phase transitions using all-optical techniques. – Mark Saffman


Features

More Features »

Announcements

More Announcements »

Subject Areas

Atomic and Molecular PhysicsOptics

Previous Synopsis

Soft Matter

Grainy picture

Read More »

Next Synopsis

Astrophysics

Better view of a merging pair

Read More »

Related Articles

Synopsis: A Neat Way to Slow Down Light
Optics

Synopsis: A Neat Way to Slow Down Light

A new technique slows down light in a crystal by simply shining a laser on it and varying an applied voltage. Read More »

Focus: Reversing Light Scattering with a Handful of Photons
Optics

Focus: Reversing Light Scattering with a Handful of Photons

When a beam of light is sent through a nearly opaque material, the scattered light that emerges can be unscrambled even with relatively few photons detected. Read More »

Focus: Atomic Impersonator
Optics

Focus: Atomic Impersonator

Calculations show that a carefully engineered laser pulse can induce an atom to emit light as if it were a different atom. Read More »

More Articles