Synopsis

Circuit Analysis

Physics 4, s151
An electronic circuit provides a simple analog for a special class of quantum mechanical Hamiltonians.
J. Schindler et al., Phys. Rev. A (2011)

Everyone learns in a first course on quantum mechanics that the result of a measurement cannot be a complex number, so the quantum mechanical operator that corresponds to a measurement must be Hermitian. However, certain classes of complex Hamiltonians that are not Hermitian can still have real eigenvalues. The key property of these Hamiltonians is that they are parity-time (PT) symmetric, that is, they are invariant under a mirror reflection and complex conjugation (which is equivalent to time reversal).

Hamiltonians that have PT symmetry have been used to describe the depinning of vortex flux lines in type-II superconductors and optical effects that involve a complex index of refraction, but there has never been a simple physical system where the effects of PT symmetry can be clearly understood and explored. Now, Joseph Schindler and colleagues at Wesleyan University in Connecticut have devised a simple LRC electrical circuit that displays directly the effects of PT symmetry. The key components are a pair of coupled resonant circuits, one with active gain and the other with an equivalent amount of loss. Schindler et al. explore the eigenfrequencies of this system as a function of the “gain/loss” parameter that controls the degree of amplification and attenuation of the system. For a critical value of this parameter, the eigenfrequencies undergo a spontaneous phase transition from real to complex values, while the eigenstates coalesce and acquire a definite chirality (handedness). This simple electronic analog to a quantum Hamiltonian could be a useful reference point for studying more complex applications. – Gordon W. F. Drake


Subject Areas

Electronics

Related Articles

Infrared Single-Photon Detector for Astronomy
Superconductivity

Infrared Single-Photon Detector for Astronomy

An infrared detector is sensitive to a wide range of intensities and could potentially pick up biomarkers from exoplanet atmospheres. Read More »

How to Detect a Stream of Microwave Photons
Superconductivity

How to Detect a Stream of Microwave Photons

A new device converts a stream of microwave photons into an electric current with high efficiency, which will benefit quantum information technologies. Read More »

Thin Films of Topological Magnets for Thermoelectric Applications
Electronics

Thin Films of Topological Magnets for Thermoelectric Applications

A thin film of a topological magnet displays a large thermoelectric effect that doesn’t require an applied magnetic field—a behavior that could lead to new energy-harvesting devices. Read More »

More Articles