Synopsis

A Neat Way to Slow Down Light

Physics 10, s25
A new technique slows down light in a crystal by simply shining a laser on it and varying an applied voltage.
Q. Li et al., Phys. Rev. A (2017)

When it comes to transmitting information quickly between data processors, photons do better than electrons. For a trivial reason: electrons can’t beat the speed of light. But to store, process, and retransmit this information, that very same light, be it classical or quantum, must also be slowed down and brought to a halt. And these tasks usually require complex tricks. Stefan Kröll and colleagues from Lund University in Sweden have now developed a simple technique for slowing down light in a crystal that relies solely on “burning” a spectral hole in the material and then changing the hole’s width.

The technique involves doing two things to a rare-earth-ion-doped crystal, a promising system for quantum information processing. The first is to fire a laser beam at the crystal to burn a hole in the material’s absorption spectrum, that is, to create a spectral transmission window. The second is to ramp up an applied voltage to reduce the hole’s width. This steepens the refractive-index variation of the crystal across the transmission window, reducing the group velocity of an optical pulse traveling in the crystal, without introducing major pulse distortion or absorption of the pulse energy. The researchers demonstrate that the same method can be used to compress the pulse in time. But it remains to be seen whether the approach can be extended to fully stop the pulse.

This research is published in Physical Review A.

–Ana Lopes

Ana Lopes is a Senior Editor of Physics.


Subject Areas

OpticsQuantum Information

Related Articles

Giant Clams Are Models of Solar-Energy Efficiency
Optics

Giant Clams Are Models of Solar-Energy Efficiency

A theoretical model for the illumination of photosynthesizing algae in giant clams suggests principles for high efficiency collection of sunlight. Read More »

Measuring Qubits with “Time Travel” Protocol
Quantum Information

Measuring Qubits with “Time Travel” Protocol

Quantum sensing can benefit from entanglement protocols that can be interpreted as allowing qubits to go backward in time to choose an optimal initial state. Read More »

Mechanical Coupling to Spin Qubits
Quantum Information

Mechanical Coupling to Spin Qubits

A vibrating nanobeam could be used to share information between distant solid-state spin qubits, potentially allowing use of these qubits in complex computations. Read More »

More Articles