Synopsis

Mimicking the Brain

Physics 7, s142
Circuits built using strongly correlated electron materials can simulate brain functions such as learning and storing memories.
Sieu Ha/Harvard University

Neuromimetic devices—artificial electronics that mimic the brain’s neurons—could be used to study how the brain works or to design circuits that borrow from the brain’s computing ability. Such devices emulate neurons and the synapses between them with voltage-driven circuits that exchange signals in a connected network. But conventional circuits cannot easily reproduce the synapses’ ability to strengthen and weaken over time with stimulation—a key property, known as “plasticity,” that forms the basis of learning and memory. A research group at Harvard University, led by Shriram Ramanathan, has now demonstrated neuromimetic circuits that replicate the plasticity of synapses. Their schemes are able to simulate a variety of neural processes: learning, unlearning, and storing memories.

The authors use a synapse-like unit they previously demonstrated: a transistor whose current depends on the resistivity of its channel, made of a samarium nickel oxide (SNO). SNO’s properties are key to plasticity: unlike conventional semiconductors, this strongly correlated system can have a much greater range of possible resistivity states. When the synapse is stimulated electrically, the resistivity changes to a different value. Based on such plastic behavior, the researchers demonstrate small circuits, consisting of several transistors, which carry out a variety of neural functions. The devices are capable, for instance, of learning that two stimuli are linked (like the association between food and a bell ring in Pavlov’s famous experiments with dogs). They can also unlearn (if the stimuli are not coupled for some time, the association is forgotten) and store memories of received stimuli.

This research is published in Physical Review Applied.

–Matteo Rini


Subject Areas

Nonlinear DynamicsBiological PhysicsMedical Physics

Related Articles

Time Delays Improve Performance of Certain Neural Networks
Computational Physics

Time Delays Improve Performance of Certain Neural Networks

Both the predictive power and the memory storage capability of an artificial neural network called a reservoir computer increase when time delays are added into how the network processes signals, according to a new model. Read More »

Noninvasive Alternative to Cancer Biopsy
Biological Physics

Noninvasive Alternative to Cancer Biopsy

Researchers have developed a cancer-detection method that uses painless sound waves, rather than a torturing needle, to obtain genetic information about a patient’s cancer. Read More »

How Droplets Form Inside Cells
Soft Matter

How Droplets Form Inside Cells

A new theory that accounts for disorder in a protein’s structure sheds light on the development inside a cell of tiny droplets that are vital to a cell’s function. Read More »

More Articles