Synopsis: Mimicking the Brain

Circuits built using strongly correlated electron materials can simulate brain functions such as learning and storing memories.
Synopsis figure
Sieu Ha/Harvard University

Neuromimetic devices—artificial electronics that mimic the brain’s neurons—could be used to study how the brain works or to design circuits that borrow from the brain’s computing ability. Such devices emulate neurons and the synapses between them with voltage-driven circuits that exchange signals in a connected network. But conventional circuits cannot easily reproduce the synapses’ ability to strengthen and weaken over time with stimulation—a key property, known as “plasticity,” that forms the basis of learning and memory. A research group at Harvard University, led by Shriram Ramanathan, has now demonstrated neuromimetic circuits that replicate the plasticity of synapses. Their schemes are able to simulate a variety of neural processes: learning, unlearning, and storing memories.

The authors use a synapse-like unit they previously demonstrated: a transistor whose current depends on the resistivity of its channel, made of a samarium nickel oxide (SNO). SNO’s properties are key to plasticity: unlike conventional semiconductors, this strongly correlated system can have a much greater range of possible resistivity states. When the synapse is stimulated electrically, the resistivity changes to a different value. Based on such plastic behavior, the researchers demonstrate small circuits, consisting of several transistors, which carry out a variety of neural functions. The devices are capable, for instance, of learning that two stimuli are linked (like the association between food and a bell ring in Pavlov’s famous experiments with dogs). They can also unlearn (if the stimuli are not coupled for some time, the association is forgotten) and store memories of received stimuli.

This research is published in Physical Review Applied.

–Matteo Rini


Features

More Features »

Announcements

More Announcements »

Subject Areas

Nonlinear DynamicsBiological PhysicsMedical Physics

Previous Synopsis

Atomic and Molecular Physics

Making Molecules Stand to Attention

Read More »

Next Synopsis

Soft Matter

Getting the Wrinkles Out

Read More »

Related Articles

Synopsis: Why the Darknet is Robust
Complex Systems

Synopsis: Why the Darknet is Robust

Network theory explains why an unsearchable portion of the Internet used for anonymous exchanges is particularly resistant to failures and attacks. Read More »

Synopsis: Cell Sensing Improves in a Loose Crowd
Biological Physics

Synopsis: Cell Sensing Improves in a Loose Crowd

Cells that communicate with each other can measure chemical concentrations with higher precision if they spread out into a sparse configuration.   Read More »

Viewpoint: Reservoir Computing Speeds Up
Nonlinear Dynamics

Viewpoint: Reservoir Computing Speeds Up

A brain-inspired computer made with optoelectronic parts runs faster thanks to a hardware redesign, recognizing simple speech at the rate of 1 million words per second. Read More »

More Articles