Synopsis: What is obvious may not be trivial

Researchers find that tunneling between the two layers of a bilayer two-dimensional electron gas is proportional to their area. Although the result may seem intuitive it poses a challenge to current theory.
Synopsis figure
Courtesy of A. Finck and J. Eistenstein.

The two-dimensional electron gas (2DEG) in the presence of a large magnetic field is a fertile playground for macroscopic quantum phenomena. Bilayer 2DEGs in which each layer is separated by a sufficiently thin insulating barrier are also found to exhibit an unusual collective phase when the total density of electrons is equal to the degeneracy, eB/h, of a single Landau level (or a “filling factor” of 1).

Writing in Physical Review B, Aaron Finck and colleagues at Caltech and Bell Laboratories find that electron tunneling between layers in a bilayer 2DEG is proportional to the sample area. The result may seem intuitive and even trivial but it contradicts existing theory. In particular, in such bilayers, each electron in a layer is bound to a virtual hole in the opposite layer, forming an exciton. It therefore costs no energy for electrons (or holes) to tunnel between layers, similar to the tunneling across a Josephson junction between two superconductors. Yet many theoretical models assumed this effect was localized to the edges of the layers where the current is injected and retrieved, rather than the entire area of the device.

Resolving the discrepancy between this experiment and theory is difficult because both correlations within the layers and between them are of equal importance. Disorder is also likely to play an important role, but even theoretical work that takes disorder into account cannot explain the Caltech group’s new experiments. –- Sarma Kancharla


More Announcements »

Subject Areas


Previous Synopsis

Nuclear Physics

Weighty matters

Read More »

Next Synopsis

Related Articles

Focus: Detecting Photons With a Thermometer

Focus: Detecting Photons With a Thermometer

A new technique detects as few as 200 microwave photons at a time by the heat they supply to an electrical circuit. Read More »

Focus: Supersensitive Needle Magnetometer

Focus: Supersensitive Needle Magnetometer

A tiny, needle-shaped ferromagnet could form a magnetic sensor far better than the current best instruments, according to theory.   Read More »

Synopsis: A Single-Level Electron Turnstile

Synopsis: A Single-Level Electron Turnstile

A combination of a quantum dot and superconducting leads works as an electron turnstile, letting only one electron pass at a time through a single level in the dot. Read More »

More Articles