Synopsis: Cooling with magnets

Scientists identify the microscopic origin of a record magnetocaloric effect in Mn1+yFe1-y(P1-xGex).
Synopsis figure

A magnetically ordered crystal can act as a refrigerant by absorbing the heat necessary to disorder its spins. Magnetic cooling via this magnetocaloric effect can reach sub-Kelvin temperatures.

In an article appearing in Physical Review B, Danmin Liu of the Beijing University of Technology, Robert Cava of Princeton University, Jeffrey Lynn of NIST, and collaborators in China, Canada, and the United States study various compositions of the promising refrigerant Mn1+yFe1-y(P1-xGex) with neutron diffraction and magnetization measurements. They find that temperature or a magnetic field can drive a first-order phase transition between a paramagnetic and ferromagnetic phase. The magnetic entropy change between these phases—a measure of the efficiency of the magnetocaloric effect—is determined by the degree of completeness of the conversion from one phase to the other. The composition Mn1.1Fe0.9(P0.8Ge0.2) exhibits a magnetic entropy change of about 74J/kg K, which is among the highest achieved.

Although a record magnetocaloric efficiency was engineered by appropriately tuning the concentration of Ge, there are still inhomogeneities in the distribution of Ge, and the conversion from one phase to another is not complete. These findings suggest that by perfecting the recipe, an even larger magnetocaloric effect should be possible in this material. – Alexios Klironomos


Announcements

More Announcements »

Subject Areas

Magnetism

Previous Synopsis

Particles and Fields

Deciphering a bump in the spectrum

Read More »

Next Synopsis

Particles and Fields

Building a tower out of the vacuum

Read More »

Related Articles

Synopsis: How Spin Waves Bend
Spintronics

Synopsis: How Spin Waves Bend

Researchers have verified experimentally that the reflection and refraction of spin waves at an interface follow a Snell’s-like law. Read More »

Synopsis: Polarons Drive a Magneto-Optical Effect
Magnetism

Synopsis: Polarons Drive a Magneto-Optical Effect

A surprisingly large magneto-optical response occurs when mobile electrons in a cooled material become trapped by their interaction with the surrounding lattice. Read More »

Synopsis: Magnon Drag
Spintronics

Synopsis: Magnon Drag

Quantized spin waves known as magnons could experience a drag-like phenomenon in two spatially separated ferromagnetic layers. Read More »

More Articles