Synopsis: Caged atoms in fullerenes made to order

Fullerenes enclosing a metallic complex are found to form an ordered array with preferred alignment on a copper surface.
Synopsis figure
Illustration: M. Treier et al., Phys. Rev. B (2009)

Endohedral metallofullerenes—fullerenes enclosing metallic atoms within their interior—show interesting optical, electronic, and magnetic properties due to charge transfer from the metal to the carbon cage. They are also quite stable compared to pure fullerenes, which are highly reactive. The prototypical system, a trimetallic nitride enclosed in C80, is known to exhibit ordering of the endohedral unit. This raises the possibility of manipulating small clusters of endohedral fullerenes into ordered arrays where information can be stored by switching the orientation of endohedral units.

Presenting their work as a Rapid Communication in Physical Review B, Matthias Treier and collaborators from Switzerland, Germany, and China have carried out a detailed study of (sub-) monolayers of endohedral trimetallic nitride fullerene Dy3N in C80 on Cu(111) using scanning tunneling microscopy (STM) and resonant x-ray photoelectron diffraction. Treier et al. find that these objects form an ordered superstructure on the template, with both the carbon cage and the endohedral unit ordered with respect to the substrate. High-resolution STM images find three rotationally equivalent molecular orientations of the C80 cage with equally oriented molecules forming small domains of 5–15 molecules within larger islands. The data show that, while nitrogen remains near the center of the cage, the Dy3 unit takes at least two inequivalent orientations in the C80 cages on the substrate. These findings open the way for exploring the manipulation of the endohedral orientation via external fields for nanoscale information storage. – Sarma Kancharla


More Announcements »

Subject Areas


Previous Synopsis


A coincidence of errors

Read More »

Next Synopsis

Particles and Fields

Producing top quarks one at a time

Read More »

Related Articles

Synopsis: Taking Pictures with Single Ions
Atomic and Molecular Physics

Synopsis: Taking Pictures with Single Ions

A new ion microscope with nanometer-scale resolution builds up images using single ions emitted one at a time from an ion trap. Read More »

Synopsis: Measuring Spin One Atom at a Time

Synopsis: Measuring Spin One Atom at a Time

Electron microscopy experiments have measured the spin state of individual metal atoms on a graphene layer, characterizing their potential for information storage applications.   Read More »

Viewpoint: Sharing Quantum States
Condensed Matter Physics

Viewpoint: Sharing Quantum States

A quantum dot can form a mesoscopic quantum state together with the electrons of a cavity in which the dot is embedded. Read More »

More Articles