Synopsis

Uncovering hidden order

Physics 3, s154
New calculations offer clues about the origin of the “hidden order” phase in URu2Si2.
Credit: P. Oppeneer et al., Phys. Rev. B (2010)

At low temperature the uranium compound URu2Si2 exhibits a transition to a mysterious phase. The origin of this phase has not yet been uncovered, even after 25 years of intensive investigations, and it has therefore become known as the “hidden order.”

In a paper appearing in Physical Review B, Peter Oppeneer and colleagues from Uppsala University in Sweden, and collaborators at Los Alamos National Laboratory and Leiden University in the Netherlands, report state-of-the-art electronic structure calculations, including dynamical mean-field theory, that offer fresh insight into the nature of the electrons that are responsible for the hidden order. Through extensive comparison of measured and calculated properties, the study reveals that at low temperatures the uranium electrons are primarily itinerant rather than localized. The calculations provide a detailed picture of where in reciprocal space the defining electrons are positioned, i.e., the Fermi surface. Thus a Fermi surface of URu2Si2, in conjunction with a certain type of symmetry breaking based on antiferromagnetic fluctuations, has now been predicted that brings the unraveling of the hidden-order mystery closer. The researchers propose that spin fluctuations are the unexpected source of the hidden order. These fluctuations are predicted to couple strongly to a Fermi surface instability, which then drives the phase transition. Further experiments to test this interpretation are expected. –Anthony Begley


Subject Areas

Strongly Correlated Materials

Related Articles

Squeezing a Wigner Solid
Strongly Correlated Materials

Squeezing a Wigner Solid

Researchers have made electrons crystallize into an anisotropic structure, which could lead to new insights into quantum many-body systems. Read More »

Electrically Controlling the Kondo Effect
Spintronics

Electrically Controlling the Kondo Effect

Spin-polarized electrons can suppress the experimental signature of the quantum many-body phenomenon known as the Kondo effect. Read More »

Lone Spin Remains Shielded Despite Superconductivity
Condensed Matter Physics

Lone Spin Remains Shielded Despite Superconductivity

Researchers explore the question of whether a Kondo cloud—a phenomenon common in conventional metals—can also occur in superconductors. Read More »

More Articles