Synopsis: Error tracking

Various models in nuclear physics can be used to fit the masses of known nuclei, but the predictions tend to be inconsistent for masses that have not been measured. A thorough study examines this problem and provides a route to quantify these errors.
Synopsis figure
Illustration: Alan Stonebraker

The measured masses of over 2000 nuclei can be fit to a variety of nuclear models by varying the parameters of these models. The rms deviations of the fits are of the order of 0.6 MeV (relative to the ~ MeV energy scale of interest). However, the predictions for masses that have not been measured vary greatly from model to model. This poses a clear problem for making predictions in, for example, the r-process path for nucleosynthesis, which involves nuclei that are far from the line of stability and whose masses must be extrapolated from fits to known nuclei.

In a paper appearing in Physical Review C, Jussi Toivanen, Jacek Dobaczewski, and colleagues at the University of Jyväskylä in Finland present a method for estimating the uncertainties in the predictions for the masses of unmeasured nuclei. The procedure is based on standard statistical methods for varying only well-determined, linear combinations of the parameters in a model. The authors also distinguish between exact models, where experimental errors dominate, and inexact models, where the theoretical fit is poorer than the experimental error. The latter is the case for nuclear masses.

Taking a microscopic-macroscopic model based on the liquid drop model with shell-correction energies, they give a series of illustrations of what the nuclear mass fits look like when the number of parameters in the model for the shell corrections is successively restricted. They also illustrate how the data can be weighted to emphasize the importance of certain classes of nuclei, for example, light versus heavy nuclei.

The bottom line of the work is that greater care should be taken to estimate the reliability of extrapolations using mass fits. – John Millener


Announcements

More Announcements »

Subject Areas

Nuclear Physics

Previous Synopsis

Next Synopsis

Soft Matter

Imaging colloids

Read More »

Related Articles

Viewpoint: Of Gluons and Fireflies
Nuclear Physics

Viewpoint: Of Gluons and Fireflies

Improved models of gluon fluctuations within protons have been developed and applied to particle collision data, pointing to strong gluon fluctuations at high energies. Read More »

Synopsis: Neutron Capture Constraints
Nuclear Physics

Synopsis: Neutron Capture Constraints

Experiments place tighter bounds on neutron capture rates that play an important role in the production of heavy elements in the Universe. Read More »

Synopsis: Trailing the Photons from Neutron Decay
Nuclear Physics

Synopsis: Trailing the Photons from Neutron Decay

A high-precision measurement of the photons emitted by neutron decays brings researchers closer to a new test of the standard model. Read More »

More Articles