Synopsis: Getting closer to the Bohr model

An algebraic version of Bohr’s collective model is shown to be an effective tool for the analysis of rotational and vibrational spectra in nuclei.
Synopsis figure

In the algebraic collective model, the five variables define the quadrupole moments of a nucleus. A group theoretical approach is used to separate the variables into a “radial” coordinate (β) and four angular variables. The radial wave functions can be chosen corresponding to a specific mean deformation in β while calculations involving the angular coordinates are made simple by group theoretical techniques. This leads to huge computational savings over calculations in a spherical basis (β=0), used in some previous models, for which a very much larger set of basis functions is required. The Bohr Hamiltonian can now be solved for virtually any assumed potential.

In a paper appearing in Physical Review C, David Rowe and Trevor Welsh of the University of Toronto in Canada and Mark Caprio of the University of Notre Dame in the US demonstrate the practical utility of the algebraic collective model when applied to various well-known solvable limits of the Bohr model. In several cases, they find a substantial amount of centrifugal stretching (elongation of the nucleus with increasing angular momentum), which is neglected in adiabatic approximations to the Bohr model.

They argue that, as in the case of the interacting boson model, the ease of carrying out collective model calculations for a wide range of Hamiltonians can be used to quickly characterize a large body of nuclear phenomena and test for limitations of the Bohr model. – John Millener


Announcements

More Announcements »

Subject Areas

Nuclear Physics

Previous Synopsis

Next Synopsis

Related Articles

Synopsis: Fission Takes Its Time
Nuclear Physics

Synopsis: Fission Takes Its Time

Nuclear fission simulations show that the evolution of a splitting plutonium nucleus may be slower than previously thought. Read More »

Synopsis: Nucleus is Surprisingly Pear Shaped
Nuclear Physics

Synopsis: Nucleus is Surprisingly Pear Shaped

Experiments confirm that the barium-144 nucleus is pear shaped and hint that this asymmetry is more pronounced than previously thought. Read More »

Viewpoint: Can Four Neutrons Tango?
Nuclear Physics

Viewpoint: Can Four Neutrons Tango?

Evidence that the four-neutron system known as the tetraneutron exists as a resonance has been uncovered in an experiment at the RIKEN Radioactive Ion Beam Factory. Read More »

More Articles