Synopsis

Cosmic backtracking

Physics 3, s140
More accurate predictions of the silicon content in meteoritic grains allow for a better understanding of the exploding stars that produced them.
Credit: NASA/JPL-Caltech

Exploding stars called novae are thermonuclear outbursts triggered when a white dwarf star gravitationally captures hydrogen-rich material from a nearby companion star. A number of meteoritic grains from the early solar system have been discovered that may have been produced in novae. If so, the ratios between different isotopes of silicon in these grains may reflect conditions during the nova outburst.  In order to predict the isotopic ratios expected in these grains and compare with the observed values, it is critical to understand the nuclear reactions that lead to silicon nucleosynthesis.

Writing in Physical Review C, Kiana Setoodehnia and colleagues at McMaster University in Canada, and collaborators in Germany and the US, have examined the 29P(p,γ)30S reaction, which affects the synthesis of silicon in novae. (Both 29P and 30S are unstable and decay to silicon isotopes.)

By accurately measuring the energies of excited states in 30S, Setoodehnia et al. have been able to calculate the rate of the 29P(p,γ)30S reaction with improved precision and find that it is significantly higher (by about a factor of 10 for certain temperatures) than previously thought. A new excited state—seen here for the first time—makes a significant contribution to the reaction rate near the temperatures that occur during a nova outburst.

The impact of Setoodehnia et al.’s results on predicting silicon isotopic ratios in models of novae will likely be significant, and will be explored in future work. – Brad Filippone


Subject Areas

AstrophysicsNuclear Physics

Related Articles

A Pathway to Making Molecular Oxygen That Doesn’t Involve Life
Astrophysics

A Pathway to Making Molecular Oxygen That Doesn’t Involve Life

Researchers have quantified a pathway for the formation of molecular oxygen from the interaction of carbon dioxide with electrons, key information for searches of life on other worlds. Read More »

Exploring the Black Hole Population with an Open Mind
Gravitation

Exploring the Black Hole Population with an Open Mind

A new model describes the population of black hole binaries without assumptions on the shape of their distribution—a capability that could boost the discovery potential of gravitational-wave observations. Read More »

Nuclear Physics from Particle Physics
Particles and Fields

Nuclear Physics from Particle Physics

A new theoretical analysis connects the results of high-energy particle experiments at the Large Hadron Collider with three-proton correlations inside nuclei. Read More »

More Articles