Synopsis: Squashed Nuclei

Germanium-76 is a rare example of a nucleus with a triaxial symmetry in its ground state.
Synopsis figure
Courtesy J. Dudek/University of Strasbourg

Most nuclei are either spherical, or ellipsoidal like a football (the American variety.) But a much rarer possibility is a triaxial nucleus, which is shaped like a flattened football. In Physical Review C, Yosuke Toh, at the Japan Atomic Energy Agency in Tokai, and colleagues report that germanium-76 (76Ge), a stable isotope, is one of few known examples of a nucleus that has this triaxial symmetry in its lowest energy state. The finding is an important opportunity to test nuclear models, which predict the shape of a nucleus based on the number of neutrons and protons, and their interactions.

Nuclei that are triaxial in their ground state were first predicted around 1960. These “rigid” triaxial nuclei were initially assumed to be fairly common. Instead, virtually all known nuclei lacking cylindrical symmetry have turned out to be “soft,” meaning the football shape oscillates between being squashed and unsquashed. To distinguish rigid and soft shapes, which have different origins, experimentalists measure the energies of nuclear states with different angular momenta: For both shapes, there are deviations—known as “staggering”—from the usual smooth variation in energy with increasing angular momentum, but the staggering for rigid, triaxial nuclei is opposite to that for soft, asymmetric nuclei.

Toh et al. used Argonne National Lab’s Tandem Linear Accelerator System (ATLAS) to produce a beam of 76Ge nuclei, which they smashed into a uranium target. Gamma rays emitted from the germanium nuclei after impact allowed the researchers to identify the energies of just the right set of states needed to determine the nuclei’s triaxial symmetry, though the staggering pattern they observed is less pronounced than models predicted. – Rick Casten


More Announcements »

Subject Areas

Nuclear Physics

Previous Synopsis

Next Synopsis

Related Articles

Synopsis: Throwing Nuclei in the Ring
Nuclear Physics

Synopsis: Throwing Nuclei in the Ring

By trapping nuclei in a particle storage ring, researchers characterize previously inaccessible nuclear reactions that take place in stellar explosions. Read More »

Viewpoint: Cavity with Iron Nuclei Slows Down X Rays

Viewpoint: Cavity with Iron Nuclei Slows Down X Rays

Slow light effects have been measured for x rays using a cavity filled with iron nuclei, where the speed of light was reduced by a factor of 10,000. Read More »

Viewpoint: Cyclotron Radiation from One Electron
Particles and Fields

Viewpoint: Cyclotron Radiation from One Electron

An electron’s energy can be determined with high accuracy by detecting the radiation it emits when moving in a magnetic field. Read More »

More Articles