Synopsis: Whence Antineutrinos?

Theorists suggest which fission fragments should be experimentally characterized to better understand antineutrino emission in nuclear reactors.
Synopsis figure
Elizabeth McCutchan/Brookhaven National Laboratory

Nuclear reactors are intense sources of neutrinos, generating over 1020 antineutrinos per second as fission products undergo beta decay. Detecting these antineutrinos could be used to monitor reactors in nonproliferation programs but also to test fundamental questions in neutrino physics: recent measurements revealed that the measured antineutrino flux is lower than predicted—a puzzling finding known as the “antineutrino anomaly.” Such a deficit could imply that some neutrinos are lost, for instance, by transforming into undetectable “sterile” neutrinos not predicted by the standard model. Now, the calculations of scientists from the National Nuclear Data Center at Brookhaven National Laboratory, New York, may lead to better models of antineutrino emission for both fundamental studies and applications. The results suggest that just a few among hundreds of possible fission fragments are responsible for most of the detectable antineutrinos emitted by a fission reactor.

The authors modeled antineutrino spectra using a “summation method”: for the four most important fissile nuclei contained in the fuel of conventional reactors (uranium-235, uranium-238, plutonium-239, and plutonium-241), they calculated the spectrum of emitted antineutrinos by summing up the contribution from each possible fission fragment. Out of 800 nuclides that can contribute to antineutrino emission, the authors’ analysis showed that only a handful of nuclides (92-rubidium and 96-ytterbium in particular) provide the majority of neutrinos, in particular at the high-energy side of the spectrum (where the discrepancies between theory and experiments are expected to be larger). The results suggest that to tackle the antineutrino anomaly with more accurate models​, experiments should thus focus on characterizing these few key nuclei, since small changes in their beta-decay parameters will have a strong effect on the antineutrino emission.

This research is published in Physical Review C.

–Matteo Rini


Announcements

More Announcements »

Subject Areas

Nuclear PhysicsParticles and Fields

Previous Synopsis

Magnetism

Magnetic Graphene

Read More »

Next Synopsis

Physical Chemistry

Have Water, Will Charge

Read More »

Related Articles

Focus: More Hints of Exotic Cosmic-Ray Origin
Astrophysics

Focus: More Hints of Exotic Cosmic-Ray Origin

New Space Station data support a straightforward model of cosmic-ray propagation through the Galaxy but also add to previous signs of undiscovered cosmic-ray sources such as dark matter. Read More »

Viewpoint: Connecting the Bright and Dark Sides of Galaxies
Cosmology

Viewpoint: Connecting the Bright and Dark Sides of Galaxies

A universal law shows that the rotation of a disk galaxy is determined entirely by the visible matter it contains, even if the disk is mostly filled with dark matter. Read More »

Synopsis: Neutron Stars in a Petri Dish
Nuclear Physics

Synopsis: Neutron Stars in a Petri Dish

Simulations of the dense matter in a neutron star’s crust predict the formation of structures that resemble those found in biological membranes. Read More »

More Articles