Synopsis: Sand piles

Images of the craters that form in underwater sand piles as air is forced to flow from beneath lead to a quantitative model of granular flow.
Synopsis figure

Granular materials, like sand, seem like fluids when they are pushed lightly, but are much more resistant under a sudden impact. While this is intuitively clear, the dynamics of granular material and, in particular the formation of craters upon impact, are difficult to predict and quantify because of the complex interactions between the grains.

One way to study how craters form in sand is to drop something—like a ball—and see how large of an impression it makes. Writing in Physical Review E, Germán Varas, Valérie Vidal, and Jean-Christophe Géminard from the Université de Lyon in France are approaching the problem from a different side: they push air up through a layer of sand immersed in water and watch how craters form in the sand as the air escapes.

The setup is extremely simple: a web camera monitors the surface profile of the sand, which is confined in a picture-frame-like glass box, as air is pushed through at a constant flow rate. When the flow rate of air is low, the gas tends to bubble out of the sand, with sand replacing the space left by a bubble after it leaves. At faster flow rates, the gas passes through an essentially open channel.

The flowing air pushes sand into peaks on either side of the crater that forms where the gas emerges. Varas et al. show that the distance between these peaks increases logarithmically with time, independently of the flow rate.

Quantitative models based on these types of “table top” experiments can be of interest to geologists who are trying to understand the morphology of craters formed, on a much greater scale, by volcanoes and meteorites. – Jessica Thomas


Announcements

More Announcements »

Subject Areas

Interdisciplinary Physics

Previous Synopsis

Particles and Fields

New forces in the dark sector

Read More »

Next Synopsis

Related Articles

Synopsis: Trees Crumbling in the Wind
Materials Science

Synopsis: Trees Crumbling in the Wind

Lab experiments with wooden rods help explain why all trees—irrespective of size or species—break when battered by wind blowing at the same critical speed. Read More »

Focus: Sensing Delays Control Robot Swarming
Interdisciplinary Physics

Focus: Sensing Delays Control Robot Swarming

A robot group clusters together or disperses based on each robot’s reaction time for sensing light, a finding useful for search-and-rescue missions.   Read More »

Focus: Wikipedia Articles Separate into Four Categories
Interdisciplinary Physics

Focus: Wikipedia Articles Separate into Four Categories

A study of the entire editing history of English Wikipedia shows that the articles cluster into four categories based on how frequently and how aggressively they are edited. Read More »

More Articles