Synopsis: Are eccentric cells better scouts?

A theoretical approach explores the role of shape in the ability of cells to sense environmental changes.
Synopsis figure
Credit: Carin Cain

To locate food sources or escape harmful elements, cells determine concentration gradients in the chemicals within their environment. Given their small size, cells must be able to detect a difference of a few tens of molecules across their length, making the detection process intrinsically stochastic. Within this constraint, Bo Hu and colleagues at the University of California, San Diego, develop a theoretical model to understand the role a cell’s shape plays in determining concentration gradients. Their work is presented in Physical Review E.

Hu et al. formulate the detection problem in terms of receptors on the surface of the cell that can be either bound (“on”) or unbound (“off”) to an external molecule. The probability of a receptor being on depends on the local concentration of chemicals. The team uses a statisticial approach to calculate the uncertainty in determining the two parameters that define a concentration gradient—magnitude and direction—by maximizing the likelihood of any one particular pattern of on and off receptors.

The authors find that cells can change the relative precision with which these two parameters can be estimated by adopting elliptical shapes, but they cannot improve the detection of a gradient’s direction and magnitude simultaneously. Similarly, cells can improve gradient detection in certain directions at the expense of others by, for example, increasing the density of chemical receptors at certain points on the cell surface. – Ralf Bundschuh


Announcements

More Announcements »

Subject Areas

Biological Physics

Previous Synopsis

Superconductivity

Hidden simplicity

Read More »

Next Synopsis

Quantum Information

A few good photons

Read More »

Related Articles

Viewpoint: Putting Bounds on Biochemical Noise
Biological Physics

Viewpoint: Putting Bounds on Biochemical Noise

Biochemical networks are often poorly characterized, but researchers can still derive limits on the level of the random variations or noise in different network components. Read More »

Focus: Bumblebees In Turbulence
Biological Physics

Focus: Bumblebees In Turbulence

A simulation of a flying bee shows that insects don’t expend extra energy to maintain lift in turbulent air flow. Read More »

Viewpoint: A One-Sided View of Acoustic Traps
Biological Physics

Viewpoint: A One-Sided View of Acoustic Traps

Using new techniques for shaping sound waves from a single source, researchers have made acoustic tweezers that move particles around in three dimensions. Read More »

More Articles