Synopsis: Tracking the Movement of Single Molecules in Cells

Fluorescence imaging of single molecules combined with computer simulations suggest that a crowded cytoplasm may reduce the measured protein mobility in cells.
Synopsis figure
Y. Lill et al., Phys. Rev. E (2012)

The rate-limiting step for biochemical interactions in cells is often the time it takes for the relevant molecules to get where they need to go. Measurements have shown that the mobility of molecules in cellular cytoplasm is an order of magnitude smaller than their mobility in aqueous solutions, but it is unclear if the slower rate of diffusion is caused by a crowded cytoplasm or if it is due to sticky interactions with cellular constituents.

As reported in Physical Review E, a better understanding may come from comparing experiments that track fluorescent proteins as they diffuse through a cell with computer simulations of the same process. Yoriko Lill from Purdue University, Indiana, and colleagues studied E. coli cells that were genetically modified to express green fluorescent protein. The authors used a microscope to track the path of a single fluorescent protein as it diffused through the cytoplasm. By acquiring images at different rates, from 60 to 1000 frames per second, the authors were able to investigate a range of time and length scales that they compared with computer simulations. They also simulated diffusion of proteins in the cytoplasm with different concentrations of small spherical objects, which acted as obstacles.

The authors conclude that the reduced mobility of proteins measured in the cytoplasm could be attributed to the reduced space for movement in a crowded cytoplasm, although they cannot rule out contributions from specific interactions with cellular constituents. – Margaret Foster


Features

More Features »

Announcements

More Announcements »

Subject Areas

Biological Physics

Previous Synopsis

Particles and Fields

Narrowing the Range of Possibilities

Read More »

Next Synopsis

Nonlinear Dynamics

Power Falls in Sync

Read More »

Related Articles

Synopsis: Racing Bacteria
Biological Physics

Synopsis: Racing Bacteria

Bacteria track fast-moving chemical signals by hopping from one chemically favorable region to another. Read More »

Synopsis: Cell Sensing Improves in a Loose Crowd
Biological Physics

Synopsis: Cell Sensing Improves in a Loose Crowd

Cells that communicate with each other can measure chemical concentrations with higher precision if they spread out into a sparse configuration.   Read More »

Focus: Membrane Holes Can Shrink, Grow, or Stay Put
Soft Matter

Focus: Membrane Holes Can Shrink, Grow, or Stay Put

Pores in a polymer film do not change size over time if they have just the right diameter, according to experiments. Read More »

More Articles