Synopsis: The Blueprint for DNA Origami

A new model of DNA is able to reproduce the observed features of self-organizing nanostructures in DNA origami.
Synopsis figure
J. M. Arbona et al., Phys. Rev. E (2012)

DNA provides the code for life, but it also can be a construction material for self-forming nanostructures. So-called DNA origami takes advantage of the highly selective interactions between strands of DNA to make arbitrary two- and three-dimensional shapes. To help understand the potential of this nanotechnology, a group has generalized previous theoretical work that treats DNA as a “stack of plates.” The adapted model, described in Physical Review E, is able to reproduce mechanical and elastic properties of DNA origami.

Researchers know how to synthesize strands of DNA that self-organize into ribbons, boxes, and other forms that may eventually be used as electronic templates and nanorobots. After being heated and then slowly cooled, the strands fold and weave together, controlled by the unique pairings between DNA bases. However, current models of DNA origami tend to approximate these base pair interactions by using an effective elastic theory for the connections between strands.

Jean Michel Arbona and his colleagues from the Institute of Chemistry and Biology of Membranes and Nano-objects (CBMN) in Pessac, France, have devised a new coarse-grain model that specifically accounts for base pair interactions. They assume each base pair is like a rigid ellipsoid, or “plate,” that swivels and tips with respect to its neighbors. This model was originally developed for “normal” double-stranded DNA, but Arbona and collaborators are now applying it to the multiple strands that intertwine in DNA origami. In addition to base pair interactions, the model includes the electrostatic repulsion coming from excess charge on the DNA molecule. Using Monte Carlo simulations, the team searched for stable configurations, which ended up reproducing DNA origami structures that have been observed in experiments. – Michael Schirber


Announcements

More Announcements »

Subject Areas

Soft MatterBiological Physics

Previous Synopsis

Quantum Information

Finding Quantum Keys in Noisy Fibers

Read More »

Next Synopsis

Atomic and Molecular Physics

Laser Suppression of Noise

Read More »

Related Articles

Synopsis: Explaining Chevron-Shaped Bands in Drying Colloids
Soft Matter

Synopsis: Explaining Chevron-Shaped Bands in Drying Colloids

Experiments explain why solidifying colloids sometimes form zigzagging stripes as they dry. Read More »

Synopsis: Wedged Particles Make Crystals
Soft Matter

Synopsis: Wedged Particles Make Crystals

Rod-shaped particles in a liquid arrange into a variety of structures when subjected to confining walls, an effect that might be used to design optical materials. Read More »

Synopsis: Runaway Brain
Biological Physics

Synopsis: Runaway Brain

Ultralight wirelessly powered devices can stimulate the neurons of a mouse as it moves freely over a large area. Read More »

More Articles