Synopsis

When is Biology Quantum?

Physics 8, s22
A new formalism determines whether quantum-mechanical effects are necessary for photoactivated biological processes to occur.

The absorption of quanta of light (photons) is important for many biological processes such as vision, photosynthesis, and animal magnetoreception (birds, for instance, navigate by sensing how the Earth’s magnetic field steers electrons photogenerated in their retinas). Typically, photons are absorbed by some pigment-protein complex, triggering a sequence of chemical reactions that realize a biological function. Researchers have suggested that quantum effects play a role in these processes, but a quantitative assessment of their impact has proved problematic. Now, Atac Imamoglu at the Swiss Federal Institute of Technology (ETH) in Zurich and Birgitta Whaley at the University of California, Berkeley, have described these reactions as quantum measurements, in which the pigment-protein complex acts as a quantum meter measuring the incident light. They propose a new Hamiltonian model that can assess whether quantum coherence is an essential requirement for a given process.

Absorption of light generates quantum wave packets of excited electrons, leading to quantum correlations within the absorbing complex. Using a Hamiltonian formalism, the authors followed the evolution of the correlations to check whether the subsequent chemical products reflected the initial quantum coherence. They argue that quantum coherence can be considered as essential for the bioprocess only if it is maintained beyond the initial excitation of the complex. Analyzing photosynthesis, vision, and magnetoreception, they concluded that only the latter requires quantum coherence. For the other two, the ensuing chemical reactions may still occur without it, albeit with reduced efficiency. The new framework will provide testable predictions for experimentalists and guidelines for designing biomimetic sensing and energy transfer systems whose efficiencies are enhanced by quantum effects.

–Katherine Wright

This research is published in Physical Review E.


Subject Areas

Biological Physics

Related Articles

Assessing the Brain at a Range of Frequencies
Biological Physics

Assessing the Brain at a Range of Frequencies

A new frequency-based analysis of recordings from neurons in the brain may give insight into brain pathologies such as Parkinson’s disease. Read More »

Information Flow in Molecular Machines
Biological Physics

Information Flow in Molecular Machines

A theoretical model shows that exchange of information plays a key role in the molecular machines found in biological cells. Read More »

Analysis of Zebrafish Smackdown
Biological Physics

Analysis of Zebrafish Smackdown

By observing two fighting fish, researchers have decoded the repertoire of trajectories and body postures used in the interaction—and identified the winner. Read More »

More Articles