Synopsis: Debts and Financial Crises

A model of a banking network predicts the balance of high- and low-priority debts that ensures financial stability.

When an institution goes bankrupt, it sells its remaining assets to pay off debts. So-called “senior” debts have a higher priority than junior ones and are repaid first. According to a new model, the distribution of senior vs junior debts held by banks within a financial network may affect the risk that a systemic crisis occurs. Charles Brummitt at the Center for the Management of Systemic Risk of Columbia University and Teruyoshi Kobayashi at Kobe University in Japan have developed a model that connects debt seniority with the risk of large-scale crises in a network of financial institutions.

The authors describe a system of banks indebted to one another. The banks form a “multiplex network,” akin to a social network in which the same individuals can be linked by different relationships (friend, family, colleague). The authors assume different distributions of debt seniorities and, for each, compute the probability that a cascade of bankruptcies is triggered by a small number of initial bankruptcies. The results suggest that the balance of senior and junior debts is an important factor in a system’s vulnerability to default. In particular, networks in which banks hold 50% to 100% more senior debts than junior debts minimize the risk of a global crisis. The results might encourage financial regulators to explore a “debt-seniority-mixing” requirement as a means of stabilizing the economy.

This research is published in Physical Review E.

–Matteo Rini


Features

More Features »

Announcements

More Announcements »

Subject Areas

Complex Systems

Previous Synopsis

Atomic and Molecular Physics

Chip-Size Beam Splitter for Electrons

Read More »

Next Synopsis

Atomic and Molecular Physics

Mid-Infrared Lasers Probe Atomic Structure

Read More »

Related Articles

Focus: Grid Outages from Failures of Power Line Clusters
Complex Systems

Focus: Grid Outages from Failures of Power Line Clusters

Specific clusters within a network tend to fail consistently as part of large-scale network failures, such as those in electrical grids or airline transportation systems. Read More »

Synopsis: Chemical Echo
Complex Systems

Synopsis: Chemical Echo

A set of over 1000 tiny, parallel chemical reactions demonstrates the first example of an echo phenomenon in a chemical system. Read More »

Synopsis: Flocks Without Memory
Biological Physics

Synopsis: Flocks Without Memory

Moving particles with no memory can group together in complex flock configurations using only instantaneous cues.   Read More »

More Articles