Synopsis: Soliton starter

Coupled semiconductor lasers can be used to generate controllable soliton emission patterns.
Synopsis figure

Solitons are persistent, isolated excitations in which the tendency for a wave pulse to disperse is exactly balanced by nonlinear effects in the propagation medium. A classic example is the solitary water wave that was observed traveling down a Scottish canal by John Scott Russell in the 1800s.

Communications networks and optical computing could potentially make use of optical solitons traveling in fibers, but the generation of optical solitons typically requires complex optical arrangements and close tolerances for stability. Reporting in Physical Review Letters, Patrice Genevet, Stephane Barland, Massimo Giudici, and Jorge Tredicce of the University of Nice in France describe their success at building a remarkably simple semiconductor laser system for generating solitons.

The researchers arranged two cylindrical semiconductor lasers to face each other. One of these microresonators acts as an amplifier. The other operates as a nonlinear device that has a high absorption at low light intensity and decreasing absorption at high intensity, causing the emission of light from the coupled lasers to be bistable. Because of the bistability, an incoming “writing” beam can toggle the emission of light at different locations in the cylindrical cross section of the cavities on and off.

The team imaged the spatial distribution of light emitted from the lasers and showed that with the two lasers running in bistable mode, they were able to write soliton structures into the emission of the laser. They could turn on bright soliton structures in the emission pattern selectively and then drag a soliton around by sweeping the writing beam across the diameter of the coupled microresonators.

The authors suggest that this highly controllable soliton generator could be miniaturized into a single semiconductor chip. – David Voss


Features

More Features »

Announcements

More Announcements »

Subject Areas

Optics

Previous Synopsis

Soft Matter

Imaging colloids

Read More »

Next Synopsis

Interdisciplinary Physics

Zooming out on complex networks

Read More »

Related Articles

Synopsis: A Neat Way to Slow Down Light
Optics

Synopsis: A Neat Way to Slow Down Light

A new technique slows down light in a crystal by simply shining a laser on it and varying an applied voltage. Read More »

Focus: Reversing Light Scattering with a Handful of Photons
Optics

Focus: Reversing Light Scattering with a Handful of Photons

When a beam of light is sent through a nearly opaque material, the scattered light that emerges can be unscrambled even with relatively few photons detected. Read More »

Focus: Atomic Impersonator
Optics

Focus: Atomic Impersonator

Calculations show that a carefully engineered laser pulse can induce an atom to emit light as if it were a different atom. Read More »

More Articles