Synopsis: Racking up the electron billiards

Spatial maps of the photon energy emitted by plasmons on a metal surface reveal standing wave patterns caused by electron confinement.
Synopsis figure

The confinement of electrons to regions so small that quantum effects are observed is compelling for applications in quantum computing, microchip fabrication, and nanoscale laser fabrication. Such nanostructures are typically studied with scanning probes like STM (scanning tunneling microscopy) or AFM (atomic force microscopy). Reporting in Physical Review Letters, Guillaume Schull, Michael Becker, and Richard Berndt of the University of Kiel have now combined the spectroscopic utility of optical probes with the atomic resolution of STM to create detailed images of electrons corralled into nanoscale metal islands on a gold surface.

The researchers used tungsten tips to scan a chemically etched gold surface and collected photons excited by the tunneling current at the junction between the tip and the metal. The light, which was produced by the collective electron oscillations in the metal, called plasmons, was routed through an optical fiber to a spectrometer to create maps of photon energy as a function of position on the surface. These maps show striking variations caused by standing electron waves on the surface structures. In one case, the authors scanned over a triangular metal island and saw undulations in the electron density of states caused by quantum interference effects.

In addition to the spatial map of quantum confinement, the spectral data show evidence of inelastic tunneling between the tip and the two-dimensional electron gas at the surface. This ability to examine the detailed physics of plasmonic photon generation at the atomic scale should be valuable in probing the optical properties of electrons confined to nanostructures. – David Voss


Announcements

More Announcements »

Subject Areas

Optics

Previous Synopsis

Next Synopsis

Related Articles

Synopsis: Position Detector Approaches the Heisenberg Limit
Quantum Physics

Synopsis: Position Detector Approaches the Heisenberg Limit

The light field from a microcavity can be used to measure the displacement of a thin bar with an uncertainty that is close to the Heisenberg limit. Read More »

Viewpoint: Next Generation Clock Networks
Atomic and Molecular Physics

Viewpoint: Next Generation Clock Networks

Free-space laser links have been used to synchronize optical clocks with an unprecedented uncertainty of femtoseconds. Read More »

Focus: How to Make an Intense Gamma-Ray Beam
Optics

Focus: How to Make an Intense Gamma-Ray Beam

Computer simulations show that blasting plastic with strong laser pulses could produce gamma rays with unprecedented intensity, good for fundamental physics experiments and possibly cancer treatments. Read More »

More Articles