Synopsis: Zooming out on complex networks

How the structural organization of a network evolves as it is observed on larger and larger scales remains an open question. Now, a general and systematic approach to answer this question may be in sight.
Synopsis figure

Complex networks appear in extremely diverse contexts, such as telecommunications, protein interactions, and social interactions. Yet many of these networks appear to share certain nontrivial, similar patterns of connection between their elements. Understanding the origins of these patterns and identifying and characterizing new ones is one of the main driving forces for research in complex networks. An interesting and open question pertinent to this effort is how the structural organization of a network evolves as it is observed on increasingly larger scales—from individual nodes to the network as a whole.

Building on several contributions to this problem [1,2], Filippo Radicchi, José Ramasco, and Santo Fortunato at the ISI Foundation in Torino and Alain Barrat at Université Paris-Sud take another significant step forward in a paper appearing in Physical Review Letters. Drawing from statistical mechanics, they use well-established real-space renormalization and finite-size scaling techniques and formulate a systematic approach that analyzes the evolution (or “flow”) of two judiciously chosen variables that characterize the structure of the network as they increase the scale of observation. They apply this approach to a number of artificial networks (or graphs), some of which are models of real networks, and find universal behavior that has not been identified before.

Will this approach lead to a full classification of complex networks into universality classes? That remains to be seen. But the work from Radicci et al. already complements the existing characterization of topology of complex networks. – Ling Miao

[1] C. Song, S. Havlin, and H. A. Makse, Nature 433, 392 (2005); Nature Phys. 2, 275 (2006).

[2] K.-I. Goh, G. Salvi, B. Kahng, and D. Kim, Phys. Rev. Lett. 96, 018701 (2006).


Announcements

More Announcements »

Subject Areas

Interdisciplinary Physics

Previous Synopsis

Optics

Soliton starter

Read More »

Next Synopsis

Related Articles

Focus: Keeping a Secret for a Whole Day
Interdisciplinary Physics

Focus: Keeping a Secret for a Whole Day

Researchers have securely contained a single bit for a record 24 hours, during which it was inaccessible to both sender and recipient, a technology that could be useful for voting or bidding. Read More »

Viewpoint: How Stereotypes Impact Women in Physics
Interdisciplinary Physics

Viewpoint: How Stereotypes Impact Women in Physics

Two studies by social scientists have discovered evidence of both subtle and blatant stereotyping of women in physics laboratories. Read More »

Focus: How to Compare Books or Genomes
Complex Systems

Focus: How to Compare Books or Genomes

A mathematical technique for comparing large symbol sets suggests that less frequently used words are mainly responsible for the evolution of the English language over the past two centuries. Read More »

More Articles