Synopsis: A new partner for the top quark?

Researchers propose that the supersymmetric partners of the top and bottom quarks are spin 1 instead of spin 0.
Synopsis figure
Illustration: Alan Stonebraker

Supersymmetry is a proposed extension of the Standard Model of particle physics in which each elementary particle has a partner—called a superpartner—with the opposite spin statistics. The idea addresses some key theoretical concerns about the Standard Model and provides a compelling candidate particle for the dark matter. If they exist, the superpartners in most models with these properties should be detectable at the Large Hadron Collider (LHC).

In most of the supersymmetric models proposed so far, the spin-1/2 fermion particles that make up matter—the quarks and the leptons—have heavy spin-0 superpartners. The spin-1 particles of force, like the photon, have heavy spin-1/2 superpartners. Writing in Physical Review Letters, Haiying Cai, Hsin-Chia Cheng, and John Terning of The University of California, Davis, consider an alternative possibility in which the superpartners of the spin-1/2 top and bottom quarks are spin 1 instead of spin 0.

Aside from providing a possible explanation for why the top quark is so heavy, this model predicts experimental signatures that are different from other models and could be measured at the LHC (notably, an enhanced cross section for the top quark’s superpartner). It is important to have a panoply of possible signatures to compare to what is actually measured at the LHC. – Robert Garisto


Announcements

More Announcements »

Subject Areas

Particles and Fields

Previous Synopsis

Next Synopsis

Related Articles

Synopsis: Pentaquark Discovery Confirmed
Particles and Fields

Synopsis: Pentaquark Discovery Confirmed

New results from the LHCb experiment confirm the 2015 discovery that quarks can combine into groups of five. Read More »

Synopsis: Searching for Majorana Neutrinos
Particles and Fields

Synopsis: Searching for Majorana Neutrinos

The KamLAND-Zen collaboration has run the most sensitive search to date for a radioactive decay that could reveal whether neutrinos are Majorana fermions. Read More »

Viewpoint: Hunting the Sterile Neutrino
Particles and Fields

Viewpoint: Hunting the Sterile Neutrino

A search for sterile neutrinos with the IceCube detector has found no evidence for the hypothetical particles, significantly narrowing the range of masses that a new kind of neutrino could possibly have. Read More »

More Articles