Synopsis: A new partner for the top quark?

Researchers propose that the supersymmetric partners of the top and bottom quarks are spin 1 instead of spin 0.
Synopsis figure
Illustration: Alan Stonebraker

Supersymmetry is a proposed extension of the Standard Model of particle physics in which each elementary particle has a partner—called a superpartner—with the opposite spin statistics. The idea addresses some key theoretical concerns about the Standard Model and provides a compelling candidate particle for the dark matter. If they exist, the superpartners in most models with these properties should be detectable at the Large Hadron Collider (LHC).

In most of the supersymmetric models proposed so far, the spin-1/2 fermion particles that make up matter—the quarks and the leptons—have heavy spin-0 superpartners. The spin-1 particles of force, like the photon, have heavy spin-1/2 superpartners. Writing in Physical Review Letters, Haiying Cai, Hsin-Chia Cheng, and John Terning of The University of California, Davis, consider an alternative possibility in which the superpartners of the spin-1/2 top and bottom quarks are spin 1 instead of spin 0.

Aside from providing a possible explanation for why the top quark is so heavy, this model predicts experimental signatures that are different from other models and could be measured at the LHC (notably, an enhanced cross section for the top quark’s superpartner). It is important to have a panoply of possible signatures to compare to what is actually measured at the LHC. – Robert Garisto


Announcements

More Announcements »

Subject Areas

Particles and Fields

Previous Synopsis

Next Synopsis

Related Articles

Viewpoint: Connecting the Bright and Dark Sides of Galaxies
Cosmology

Viewpoint: Connecting the Bright and Dark Sides of Galaxies

A universal law shows that the rotation of a disk galaxy is determined entirely by the visible matter it contains, even if the disk is mostly filled with dark matter. Read More »

Viewpoint: Cosmic-Ray Showers Reveal Muon Mystery
Particles and Fields

Viewpoint: Cosmic-Ray Showers Reveal Muon Mystery

The Pierre Auger Observatory has detected more muons from cosmic-ray showers than predicted by the most up-to-date particle-physics models. Read More »

Synopsis: Making Monopoles with Waves
Particles and Fields

Synopsis: Making Monopoles with Waves

Magnetic monopoles—theorized particles with only one magnetic pole—might possibly be created by wave-wave collisions. Read More »

More Articles