Synopsis: Waving, one by one

The optical equivalent of electron oscillations in periodic lattices has now been described by a fully quantum mechanical theory.
Synopsis figure

Bloch oscillations occur when electrons are driven by an external field through a periodic potential, such as that of a crystal. The phenomenon is usually interpreted in terms of the electron wave Bragg scattering off the periodic potential, causing the electron to oscillate rather than translate through the lattice. The optical analog of this effect is described in a classical picture as electromagnetic waves bouncing off a periodic structure. Writing in Physical Review Letters, Stefano Longhi of Politecnico di Milano in Italy has now formulated a fully quantum mechanical theory showing that nonclassical light consisting of only particle-like quanta can also produce optical Bloch oscillations.

Longhi considers photonic structures, where the spatial structure of the index of refraction of the material creates energy bands and band gaps analogous to those for electrons in solids, and applies a fully quantized photon field to them. He studies two situations. In the first case, photons interact with a simple singly periodic structure, and the author follows the photon number distribution as a function of distance, finding that the photons undergo Bloch oscillations just like classical particles. In a doubly periodic structure, two photon input states undergo correlated Bloch oscillations, meaning that the photons exhibit bunching and entanglement because the photons can tunnel between two energy bands. Longhi’s results may be applicable to fabricating and analyzing photonic structures useful for achieving more complex entanglements for optical quantum computing. – David Voss


Announcements

More Announcements »

Subject Areas

Optics

Previous Synopsis

Cosmology

Cosmic consistency check

Read More »

Next Synopsis

Nanophysics

Spinning on a gold atom

Read More »

Related Articles

Synopsis: Tiny Oscillator Works as Photon Changing Room
Quantum Physics

Synopsis: Tiny Oscillator Works as Photon Changing Room

A new device converts the frequency of a photon using the vibrations in a mechanical oscillator. Read More »

Synopsis: All-Around Single-Photon Source
Quantum Information

Synopsis: All-Around Single-Photon Source

A quantum dot embedded in a micropillar is an efficient source of pure and indistinguishable single photons. Read More »

Viewpoint: Closing the Door on Einstein and Bohr’s Quantum Debate
Optics

Viewpoint: Closing the Door on Einstein and Bohr’s Quantum Debate

By closing two loopholes at once, three experimental tests of Bell’s inequalities remove the last doubts that we should renounce local realism. They also open the door to new quantum information technologies. Read More »

More Articles