Synopsis: Looking under the Antarctic ice for evidence of dark matter

Detectors buried beneath the Antarctic ice place stringent limits on the presence of dark matter particles, called neutralinos, in the sun.
Synopsis figure

In the search for dark matter, among the most interesting candidates is the neutralino, a neutral particle, predicted in supersymmetric extensions of the standard model, which interacts only weakly with other matter. Since the neutralino is expected to be stable, it may be possible to find particles that are relics of the early universe.

Theorists have predicted that the sun’s gravity can trap neutralinos, which could collect in its center and then annihilate each other. The standard-model particles created by these annihilations could subsequently decay, producing high-energy neutrinos that could escape from the sun and be detected on earth. Based on searches for these neutrinos, the IceCube Collaboration has now reported in Physical Review Letters new limits on neutralino annihilations in the sun.

The IceCube neutrino detector is located between 1.5 and 2.5km beneath the Antarctic ice, to reduce background events from cosmic rays. When muon neutrinos from the sun interact with the ice, they create relativistic charged particles (muons and showers of hadrons) that produce Cherenkov light, which is picked up by the detector. In an experiment lasting more than three months, no excess of neutrinos from the direction of the sun was detected. The experimentalists have therefore placed stringent limits on neutralino annihilations in the sun—a factor of 6 improvement over some previous limits—and from these, limits on the cross section for neutralino-proton interactions for neutralinos with masses above 250GeV. These results narrow the possibilities for dark matter. – Stanley Brown


Announcements

More Announcements »

Subject Areas

Particles and FieldsAstrophysicsCosmology

Previous Synopsis

Nanophysics

Groovy nanowires

Read More »

Next Synopsis

Related Articles

Viewpoint: Extending an Alternative to Feynman Diagrams
Particles and Fields

Viewpoint: Extending an Alternative to Feynman Diagrams

A simplifying technique for calculating scattering amplitudes—the basis for predictions in particle physics experiments—has been extended to cover a class of effective quantum field theories. Read More »

Synopsis: Neutron Stars May Explain Gamma Ray Excess
Astrophysics

Synopsis: Neutron Stars May Explain Gamma Ray Excess

New models show that neutron stars—and not dark matter—could be responsible for an excess of gamma rays from the Milky Way’s center. Read More »

Synopsis: A Little Empty Inside
Cosmology

Synopsis: A Little Empty Inside

A new model has allowed researchers to test a theory for why the centers of dark matter halos are less dense than expected. Read More »

More Articles