Synopsis: Looking under the Antarctic ice for evidence of dark matter

Detectors buried beneath the Antarctic ice place stringent limits on the presence of dark matter particles, called neutralinos, in the sun.
Synopsis figure

In the search for dark matter, among the most interesting candidates is the neutralino, a neutral particle, predicted in supersymmetric extensions of the standard model, which interacts only weakly with other matter. Since the neutralino is expected to be stable, it may be possible to find particles that are relics of the early universe.

Theorists have predicted that the sun’s gravity can trap neutralinos, which could collect in its center and then annihilate each other. The standard-model particles created by these annihilations could subsequently decay, producing high-energy neutrinos that could escape from the sun and be detected on earth. Based on searches for these neutrinos, the IceCube Collaboration has now reported in Physical Review Letters new limits on neutralino annihilations in the sun.

The IceCube neutrino detector is located between 1.5 and 2.5km beneath the Antarctic ice, to reduce background events from cosmic rays. When muon neutrinos from the sun interact with the ice, they create relativistic charged particles (muons and showers of hadrons) that produce Cherenkov light, which is picked up by the detector. In an experiment lasting more than three months, no excess of neutrinos from the direction of the sun was detected. The experimentalists have therefore placed stringent limits on neutralino annihilations in the sun—a factor of 6 improvement over some previous limits—and from these, limits on the cross section for neutralino-proton interactions for neutralinos with masses above 250GeV. These results narrow the possibilities for dark matter. – Stanley Brown


Announcements

More Announcements »

Subject Areas

Particles and FieldsAstrophysicsCosmology

Previous Synopsis

Nanophysics

Groovy nanowires

Read More »

Next Synopsis

Related Articles

Focus: <i>Landmarks</i>—Discovery of a 2nd Kind of Neutrino
Particles and Fields

Focus: Landmarks—Discovery of a 2nd Kind of Neutrino

A gargantuan experiment in 1962 showed that neutrinos come in two varieties, electron and muon. Read More »

Synopsis: Mind the Binaries
Astrophysics

Synopsis: Mind the Binaries

Mergers of binary black holes from dense star clusters may be promising sources of gravitational waves. Read More »

Viewpoint: Sky Survey Casts Light on the Dark Universe
Astrophysics

Viewpoint: Sky Survey Casts Light on the Dark Universe

The Dark Energy Survey has generated a map of invisible dark matter by observing tiny gravitationally induced distortions in the images of distant galaxies. Read More »

More Articles