Synopsis

Looking under the Antarctic ice for evidence of dark matter

Physics 2, s51
Detectors buried beneath the Antarctic ice place stringent limits on the presence of dark matter particles, called neutralinos, in the sun.

In the search for dark matter, among the most interesting candidates is the neutralino, a neutral particle, predicted in supersymmetric extensions of the standard model, which interacts only weakly with other matter. Since the neutralino is expected to be stable, it may be possible to find particles that are relics of the early universe.

Theorists have predicted that the sun’s gravity can trap neutralinos, which could collect in its center and then annihilate each other. The standard-model particles created by these annihilations could subsequently decay, producing high-energy neutrinos that could escape from the sun and be detected on earth. Based on searches for these neutrinos, the IceCube Collaboration has now reported in Physical Review Letters new limits on neutralino annihilations in the sun.

The IceCube neutrino detector is located between 1.5 and 2.5km beneath the Antarctic ice, to reduce background events from cosmic rays. When muon neutrinos from the sun interact with the ice, they create relativistic charged particles (muons and showers of hadrons) that produce Cherenkov light, which is picked up by the detector. In an experiment lasting more than three months, no excess of neutrinos from the direction of the sun was detected. The experimentalists have therefore placed stringent limits on neutralino annihilations in the sun—a factor of 6 improvement over some previous limits—and from these, limits on the cross section for neutralino-proton interactions for neutralinos with masses above 250GeV. These results narrow the possibilities for dark matter. – Stanley Brown


Subject Areas

Particles and FieldsAstrophysicsCosmology

Related Articles

First Glimpses of the Neutrino Fog
Particles and Fields

First Glimpses of the Neutrino Fog

Two dark matter searches report that their detectors have likely recorded neutrinos coming from the Sun—spotting the “neutrino fog” that could imperil future dark matter searches. Read More »

Searching for Dark  Matter Variants of Quarks and Gluons
Particles and Fields

Searching for Dark Matter Variants of Quarks and Gluons

A low-energy signature of physics beyond the standard model fails to appear in proton collisions at the Large Hadron Collider. Read More »

Searching for Axions in Polarized Gas
Particles and Fields

Searching for Axions in Polarized Gas

By exploiting polarized-gas collisions, researchers have conducted a sensitive search for exotic spin-dependent interactions, placing new constraints on a dark matter candidate called the axion. Read More »

More Articles