Synopsis: The quantum shortcut to a solution

A quantum algorithm that uses the solution to a set of linear equations provides an exponential speedup by comparison with classical alternatives.
Synopsis figure

Considering the volume of research on quantum computing, there are surprisingly few quantum algorithms that are known to perform faster than their classical counterparts—the most famous example being Shor’s algorithm for factoring a large number.

Writing in Physical Review Letters, Aram Harrow at the University of Bristol, UK, and Avinatan Hassidim and Seth Lloyd at MIT in the US propose a quantum algorithm for solving a set of linear equations that, within some constraints, is exponentially faster that any classical algorithm. The algorithm could potentially have widespread applicability in fields as varied as biostatistics, ecology, and engineering, all of which rely heavily on solving linear equations.

Strictly speaking, the algorithm of Harrow et al. does not find the solution to the linear equations, but some function of the solution, such as a comparison between two stable states that evolve according to different processes. Though many real-world systems may not fall into the limited set of conditions the authors consider, this proposal provides another example to help us understand why quantum algorithms work better than classical ones. – Jessica Thomas


More Features »


More Announcements »

Subject Areas

Quantum Information

Previous Synopsis

Strongly Correlated Materials

Theory tackles strong interactions

Read More »

Related Articles

Viewpoint: Photon Qubit is Made of Two Colors

Viewpoint: Photon Qubit is Made of Two Colors

Single particles of light can be prepared in a quantum superposition of two different colors, an achievement that could prove useful for quantum information processing. Read More »

Synopsis: Ten Photons in a Tangle
Quantum Information

Synopsis: Ten Photons in a Tangle

An entangled polarization state of ten photons sets a new record for multiphoton entanglement. Read More »

Synopsis: Quantum States Made with a Pluck
Quantum Information

Synopsis: Quantum States Made with a Pluck

A proposed method of generating phonon states for quantum applications uses a single electron trapped in a suspended carbon nanotube. Read More »

More Articles