Synopsis: The shortest known photon pulses

A model of the quark-gluon plasma predicts it could emit the sort of ultrashort light pulses that would be useful for high-speed spectroscopy.
Synopsis figure
Illustration: A. Ipp et al., Phys. Rev. Lett. (2009)

Interest in performing spectroscopy with enough spatial and temporal resolution to track atomic and molecular motion is pushing scientists to generate ultrafast photon pulses. Although lasers are normally the focus of this effort, some of the shortest known photon pulses are actually produced in high-energy atomic collisions, particularly those that occur in the formation of the quark-gluon plasma (QGP).  This new state of matter is produced over nuclear sizes 10 femtometers (10-15m) and lasts up to a few yoctoseconds (10-24s).

Writing in Physical Review Letters, Andreas Ipp, Christoph H. Keitel, and Jörg Evers at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany, model the photon emission from the QGP and predict that pulses on the yoctosecond scale should occur.  These shortest of pulses have energies in the GeV range and can potentially be used to perform ultrafast time-resolved experiments in atomic and nuclear physics. Another significance of the work lies in its potential to shed new light on the equilibration processes that occur in the QGP, many aspects of which are still poorly understood. – Abhishek Agarwal


Features

More Features »

Announcements

More Announcements »

Subject Areas

Particles and Fields

Previous Synopsis

Atomic and Molecular Physics

Orientation without perturbation

Read More »

Next Synopsis

Graphene

The rules of disorder

Read More »

Related Articles

Synopsis: Model Tries to Solve Five Physics Problems at Once
Particles and Fields

Synopsis: Model Tries to Solve Five Physics Problems at Once

A minimal extension to the standard model of particle physics involves six new particles. Read More »

Synopsis: Looking for Weightier Axions
Particles and Fields

Synopsis: Looking for Weightier Axions

A new detector has searched for hypothetical dark matter particles known as axions in a previously inaccessible mass range. Read More »

Viewpoint: Dark Matter Still at Large
Cosmology

Viewpoint: Dark Matter Still at Large

No dark matter particles have been observed by two of the world’s most sensitive direct-detection experiments, casting doubt on a favored dark matter model. Read More »

More Articles