Synopsis: Giant magnetoresistance goes electric

A dual spin valve with antiparallel outer layers is used to demonstrate a new form of current-dependent giant magnetoresistance.
Synopsis figure
Illustration: Adapted from A. Aziz et al., Phys. Rev. Lett. (2009)

Giant magnetoresistance (GMR), the subject of the Nobel Prize in Physics in 2007, has led to technologies such as read-write heads for hard drives, as well as other promising devices that may one day be used for spin-dependent electronic applications (spintronics). An example of the latter is a magnetic heterostructure, called a “spin valve,” consisting of alternating ferromagnetic and nonmagnetic layers, whose resistance can be controlled by magnetism. When a current is passed through these structures, the electrons scatter differently depending on the electron spin, so the resistance of the structure depends on the relative magnetic orientation of the ferromagnetic layers. This resistance is linear and current independent.

In a recent work published in Physical Review Letters, Atif Aziz and Mark Blamire of the University of Cambridge, together with collaborators from Imperial College London and the University of Leeds, all in the UK, study the transport properties of a dual spin valve structure of Co90Fe10/Cu/permalloy (Ni80Fe20)/Cu/Co90Fe10. The dual spin valve is in an unconventional configuration in which the outer ferromagnetic layers are antiparallel, canceling the linear magnetoresistance. However, when the spin populations are far from equilibrium, Aziz et al. observe a nonlinear, current-dependent magnetoresistance. While the exact physical mechanism of this nonlinear effect has not been established, the authors attribute the effect to current-dependent interfacial and bulk scattering asymmetries in the permalloy layer. The dual spin valve studied here can, depending on the relative orientations of the magnetic moments, work as a magnetic analog to a Wheatstone bridge, or a diode that is reversible by switching the permalloy moment. – Daniel Ucko


More Announcements »

Subject Areas


Previous Synopsis

Next Synopsis

Atomic and Molecular Physics

Imaging molecular breakup

Read More »

Related Articles

Focus: Supersensitive Needle Magnetometer

Focus: Supersensitive Needle Magnetometer

A tiny, needle-shaped ferromagnet could form a magnetic sensor far better than the current best instruments, according to theory.   Read More »

Synopsis: Even-Handed Control of Quantum Dot Qubits
Quantum Information

Synopsis: Even-Handed Control of Quantum Dot Qubits

A new way to control the coupling of spins between adjacent quantum dots produces qubits that are less susceptible to electronic noise. Read More »

Synopsis: With Heat Comes Current

Synopsis: With Heat Comes Current

Researchers have observed spin-dependent thermoelectric currents in superconductors—a finding that could lead to precise cryogenic thermometers. Read More »

More Articles