Synopsis: Do cosmic rays account for all the gamma rays in diffuse galactic radiation?

New data are inconsistent with previous measurements that showed an unexpected excess of diffuse gamma-ray emission in the Galaxy.
Synopsis figure
Illustration: Fermi LAT Collaboration, Phys. Rev. Lett. (2009)

The interactions of cosmic rays with the galactic interstellar gas and radiation field result in the diffuse emission of gamma rays. If these cosmic ray interactions are the only source of such diffuse emission, then models can be constructed which fit both the cosmic ray spectra and measurements of the diffuse gamma radiation. However, several years ago, the Energetic Gamma-Ray Experiment Telescope (EGRET) at the Compton Gamma-Ray Observatory reported [1] measurements of the diffuse galactic gamma-ray emission that were larger than what the models expected. A variety of explanations for this discrepancy have been offered, with particular excitement focused on the possibility that it is the annihilation of dark matter particles that produces the excess gamma rays.

Now, new data on the diffuse galactic gamma-ray emission from the Large Area Telescope (LAT) on the Fermi Gamma-Ray Space Telescope are reported in Physical Review Letters. The LAT instrument represents a significant improvement in sensitivity and resolution compared with EGRET. The Fermi LAT Collaboration reports that both their results and the measured cosmic-ray spectra are consistent with a model of diffuse galactic gamma-ray emission—which means that the EGRET gamma-ray excess is not confirmed. – Stanley Brown

[1] S. D. Hunter et al., Astrophys. J. 481, 205 (1997).


Announcements

More Announcements »

Subject Areas

Particles and FieldsAstrophysicsCosmology

Previous Synopsis

Soft Matter

A scaffold for soft matter

Read More »

Next Synopsis

Superconductivity

Dirac connection

Read More »

Related Articles

Synopsis: A Relativistic View of a Clumpy Universe
Cosmology

Synopsis: A Relativistic View of a Clumpy Universe

Cosmologists have begun using fully relativistic models to understand the effects of inhomogeneous matter distribution on the evolution of the Universe. Read More »

Synopsis: Solar Cycle Affects Cosmic Ray Positrons
Astrophysics

Synopsis: Solar Cycle Affects Cosmic Ray Positrons

Discrepancies in the positron content of cosmic rays measured at different times are explained by the periodic reversal of the solar magnetic field’s direction. Read More »

Focus: LIGO Bags Another Black Hole Merger
Astrophysics

Focus: LIGO Bags Another Black Hole Merger

LIGO has detected a second burst of gravitational waves from merging black holes, suggesting that such detections will soon become routine and part of a new kind of astronomy. Read More »

More Articles