Synopsis: Doping graphene into superconductivity

Highly doped graphene can become superconducting.
Synopsis figure
Illustration: McChesney et al., Phys. Rev. Lett. (2010)

Graphene’s singular transport characteristics derive from its band structure, whose features include saddle points at the edges of the Brillouin zone that affect the topology of the Fermi surface.

In their article in Physical Review Letters, Jessica McChesney and her collaborators from the US, Germany, and Spain check for superconductivity in graphene because of a similarity—also caused by a saddle point in the band structure (a van Hove singularity)—with the density of states of high-temperature superconductors.

They chemically dope graphene to significantly higher levels than previously achieved and then probe its band structure with angle-resolved photoemission spectroscopy. The saddle point becomes more extended than localized as the Fermi surface moves across it. The authors calculate that, under these conditions of doping and Fermi surface topology, graphene can achieve superconductivity, in principle due to electron-electron interactions alone. – Sami Mitra


More Features »


More Announcements »

Subject Areas


Previous Synopsis

Quantum Information

Turning backaction around

Read More »

Next Synopsis

Nuclear Physics

Results from HELIOS

Read More »

Related Articles

Synopsis: Dirac Cones in Boron’s Version of Graphene
Materials Science

Synopsis: Dirac Cones in Boron’s Version of Graphene

A one-atom-thick sheet of boron atoms exhibits Dirac cones, marking the first time this electronic property has been found in a material lacking a graphene-like crystal structure.  Read More »

Synopsis: Graphene’s Elegant Optics Explained

Synopsis: Graphene’s Elegant Optics Explained

Theoretical calculations anchor graphene’s simple optical absorption in its two-dimensional structure instead of its cone-shaped energy bands. Read More »

Synopsis: A New Way to Make Graphene

Synopsis: A New Way to Make Graphene

The addition of a rapid-cooling step to the epitaxial growth of graphene on silicon carbide can yield higher-quality graphene sheets. Read More »

More Articles