Synopsis: Doping graphene into superconductivity

Highly doped graphene can become superconducting.
Synopsis figure
Illustration: McChesney et al., Phys. Rev. Lett. (2010)

Graphene’s singular transport characteristics derive from its band structure, whose features include saddle points at the edges of the Brillouin zone that affect the topology of the Fermi surface.

In their article in Physical Review Letters, Jessica McChesney and her collaborators from the US, Germany, and Spain check for superconductivity in graphene because of a similarity—also caused by a saddle point in the band structure (a van Hove singularity)—with the density of states of high-temperature superconductors.

They chemically dope graphene to significantly higher levels than previously achieved and then probe its band structure with angle-resolved photoemission spectroscopy. The saddle point becomes more extended than localized as the Fermi surface moves across it. The authors calculate that, under these conditions of doping and Fermi surface topology, graphene can achieve superconductivity, in principle due to electron-electron interactions alone. – Sami Mitra


Announcements

More Announcements »

Subject Areas

SuperconductivityMesoscopicsGraphene

Previous Synopsis

Quantum Information

Turning backaction around

Read More »

Next Synopsis

Nuclear Physics

Results from HELIOS

Read More »

Related Articles

Synopsis: Superconductors Under Pressure
Superconductivity

Synopsis: Superconductors Under Pressure

The coupling of electrons to anharmonic crystal vibrations may explain the record high-temperature superconductivity in highly pressurized hydrogen sulfide. Read More »

Focus: Voltage Fluctuations Converted to Electricity
Mesoscopics

Focus: Voltage Fluctuations Converted to Electricity

In a step toward the conversion of excess heat into electric current, researchers demonstrate a device that generates current in response to voltage fluctuations that mimic heat. Read More »

Synopsis: Sorting Carbon Nanotubes with Light
Graphene

Synopsis: Sorting Carbon Nanotubes with Light

Laser light can be used to sort carbon nanotubes according to their chirality. Read More »

More Articles