Synopsis: A flash in the quark gluon plasma

Theorists predict a form of Cherenkov radiation produced by quarks in the quark-gluon plasma.
Synopsis figure
Illustration: Alan Stonebraker

Gauge/gravity duality, namely, the proposed equivalence between various Yang-Mills and string theories, has the potential to become an important computational tool for particle physics. Although the duality has only been rigorously tested for highly supersymmetric idealizations of quantum chromodynamics, research is aimed at using the duality to make qualitative predictions for experiment.

An important example is the quark-gluon plasma discovered at the Relativistic Heavy Ion Collider (RHIC): strongly coupled Yang-Mills theory is needed to describe this state of matter, but there is a dearth of analytical methods to do so. Theorists are therefore taking advantage of gauge/gravity duality, which allows them to use tractable string theoretic methods to perform computations relevant for the strongly coupled limit of Yang-Mills theories.

In a paper appearing in Physical Review Letters, Jorge Casalderrey-Solana at CERN in Switzerland and Daniel Fernández and David Mateos at the Universitat de Barcelona in Spain utilize the gauge/gravity duality to propose that quarks in the quark-gluon plasma lose energy by producing Cherenkov radiating mesons. This energy loss mechanism is analogous to the radiation produced by high-energy electrons traveling faster than the speed of light in a medium.

Their theoretical picture relies on generic features of the gauge/gravity duality and is expected to be universal to all Yang-Mills theories that possess a gravity duality. The universality of the mechanism makes it potentially relevant for quark-gluon plasma experiments, even though the computations were carried out using idealized (supersymmetric) models. These results are encouraging for theoretical studies of the quark-gluon plasma scheduled for the Large Hadron Collider at CERN. – Abhishek Agarwal


More Features »


More Announcements »

Subject Areas

Particles and Fields

Previous Synopsis

Next Synopsis

Related Articles

Viewpoint: Spinning Gluons in the Proton
Particles and Fields

Viewpoint: Spinning Gluons in the Proton

Computer simulations indicate that about 50% of the proton’s spin comes from the spin of the gluons that bind its quark constituents. Read More »

Synopsis: Neutrino Flashes from Exploding Stars

Synopsis: Neutrino Flashes from Exploding Stars

Calculations indicate that neutrino emission from a supernova could be detected on Earth, possibly revealing how the star explodes. Read More »

Synopsis: Model Tries to Solve Five Physics Problems at Once
Particles and Fields

Synopsis: Model Tries to Solve Five Physics Problems at Once

A minimal extension to the standard model of particle physics involves six new particles. Read More »

More Articles